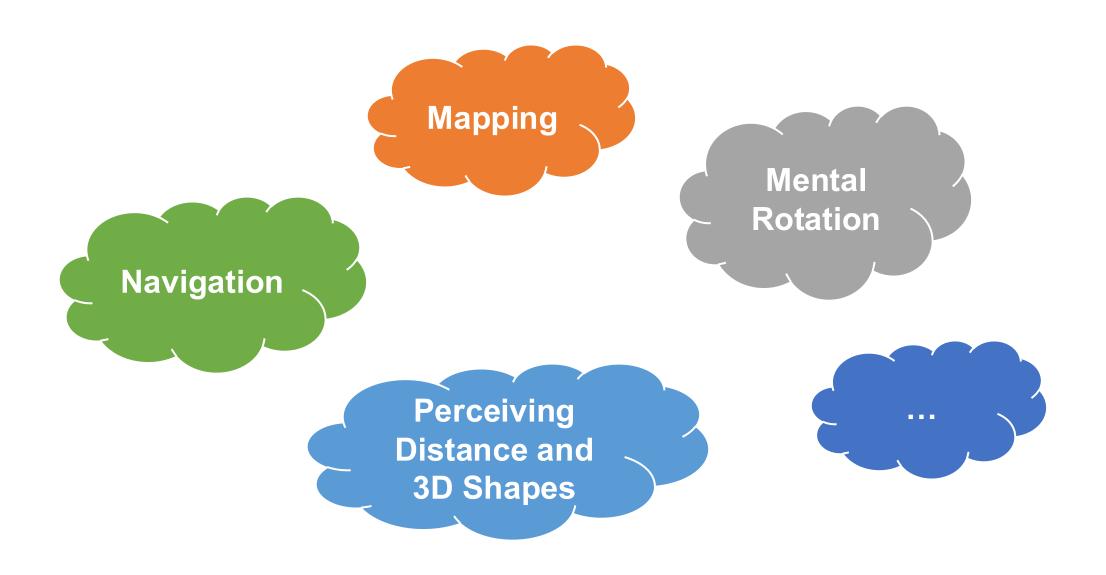
On Latent Abilities Underlying Spatial Intelligence

Qianqian Wang

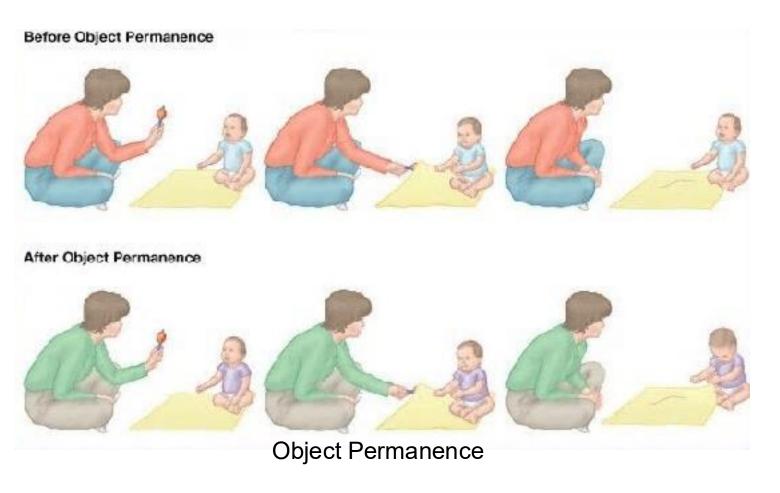
MUSI Workshop @ ICCV Oct 20, 2025

When We Talk About "Spatial Intelligence"...



But before any of that can happen...

 Before we can map or measure space, we have to believe that space — and the things within it — persist even when we're not looking



"Peekaboo!"

Latent Ability 1: Understanding the world is persistent

Our world is not ...

Movie "Everything Everywhere All at Once"

Our world is ...

Latent Ability 2: The ability to update

The world is not static – it changes! Our observation is always partial

"To Save Your Child Or Your Lawn Mower?"

Persistence and Update

Genie 3

Today's Talk

Persistence and Consistency → **Motion and Structure**

Wang et al. Tracking Everything Everywhere All at Once.

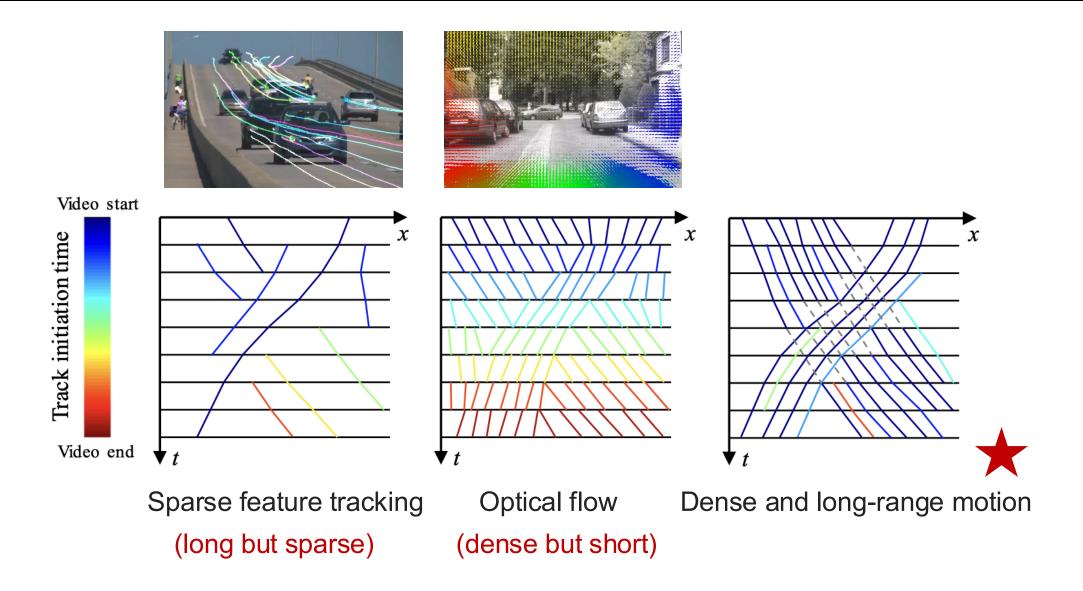
ICCV 2023 (Best Student Paper)

A Continuously-Updating 3D Perception Framework

Wang et al. Continuous 3D Perception with Persistent State.

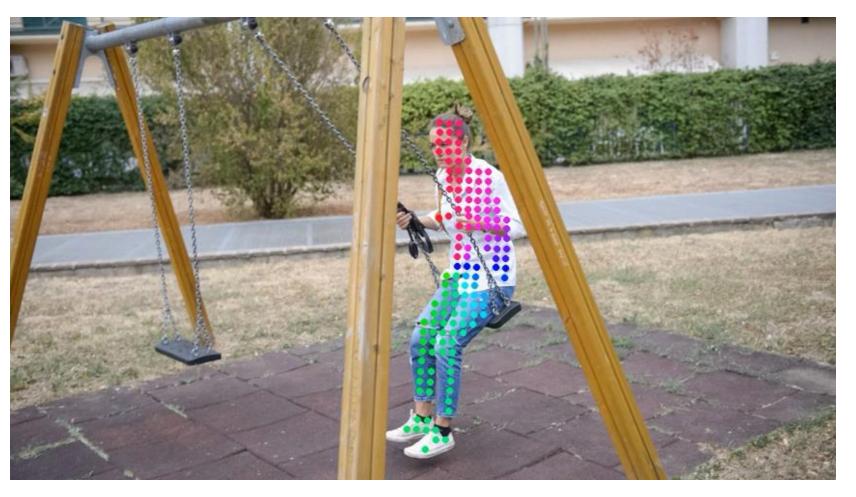
CVPR 2025 (Oral)

Motion Estimation



Chaining Optical Flow for Long-Range Motion?

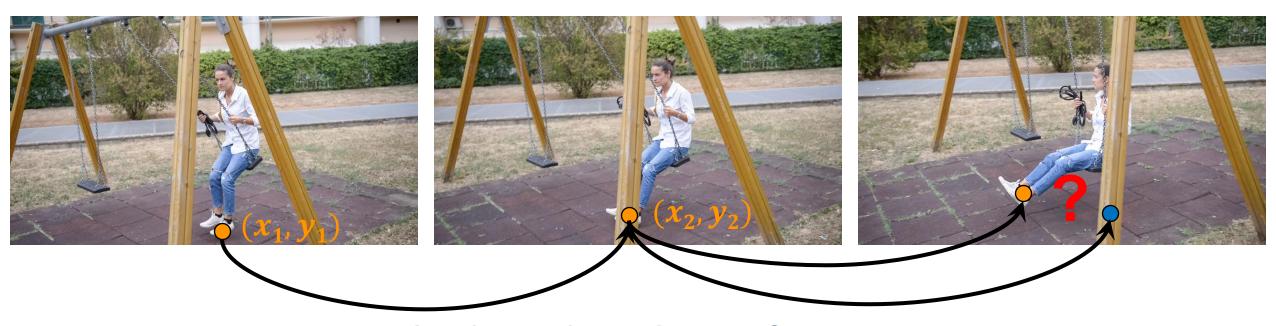
$$1 \rightarrow 2 \rightarrow 3 \rightarrow ... \rightarrow N$$



Challenge 1: Occlusion

Modeling motion in the 2D pixel space!

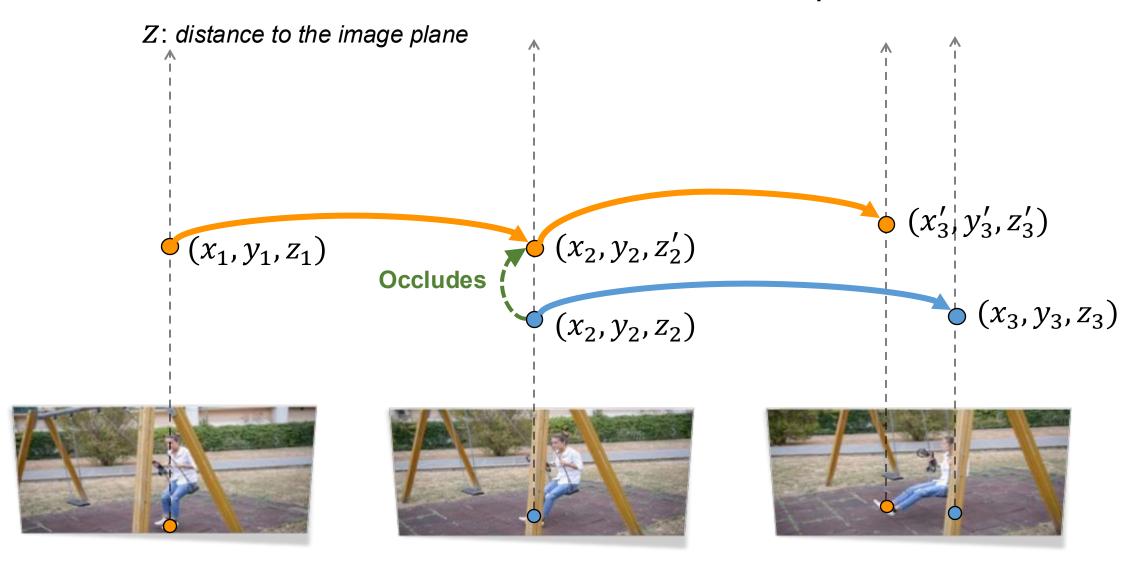
2D mapping function: [x', y'] = f([x, y])



A point on the swing set frame or on the shoe?

The World is 3D

We should model motion in 3D space

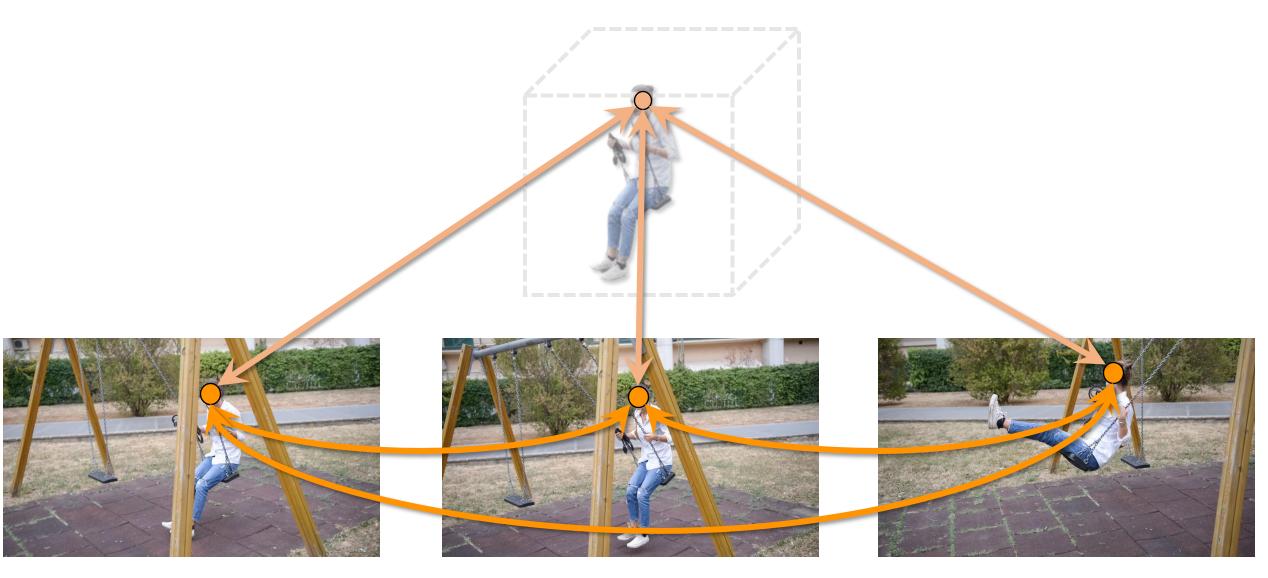


Challenge 2: No Guarantee of Cycle Consistency

$$f_{j\to i}(f_{i\to j}([x,y]_i))! = [x,y]_i$$

Correspondences Are Cycle Consistent

Global Cycle Consistency



Key Insights

We need:

- A 3D representation
- A representation that ensures global cycle consistency

OmniMotion

Test-Time optimization (per-video)

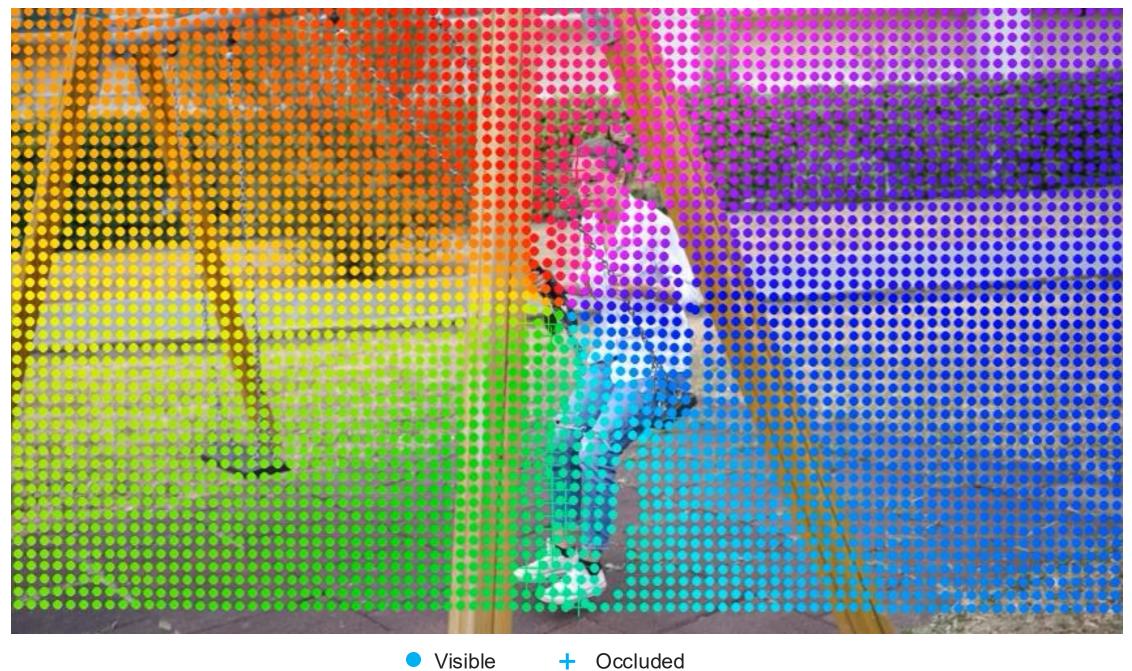
OmniMotion

- Complete (Any-to-Any)
- Handling Occlusion
- Globally Consistent

Query Frame

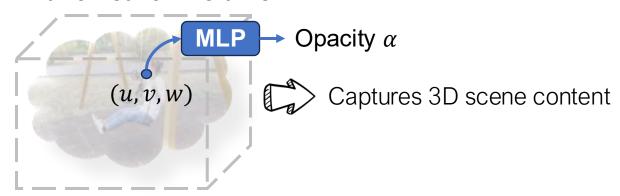
Target Frames

Occluded



OmniMotion: The Motion Representation

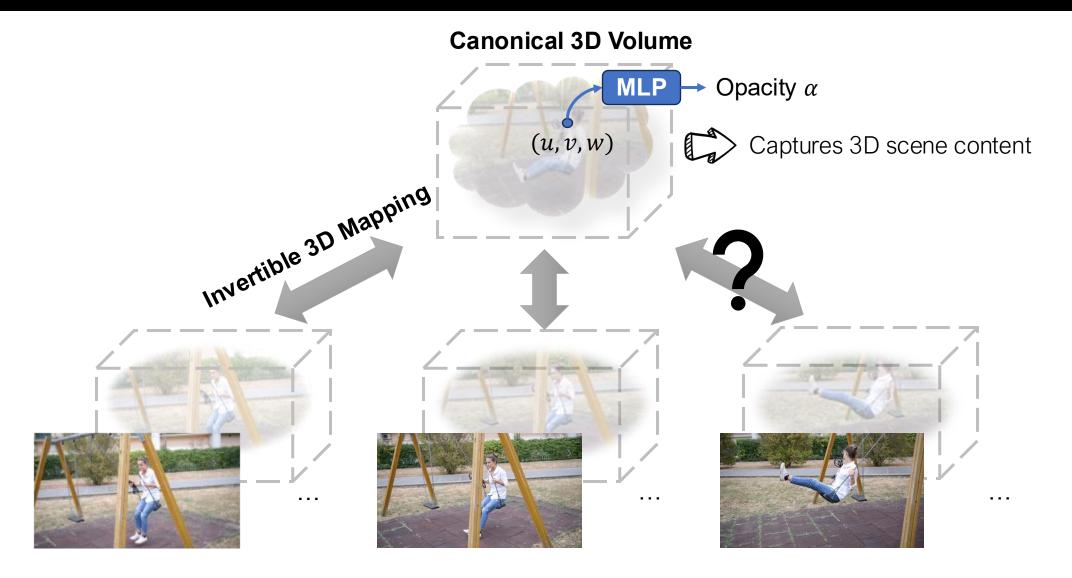
Canonical 3D Volume



. . .

. . .

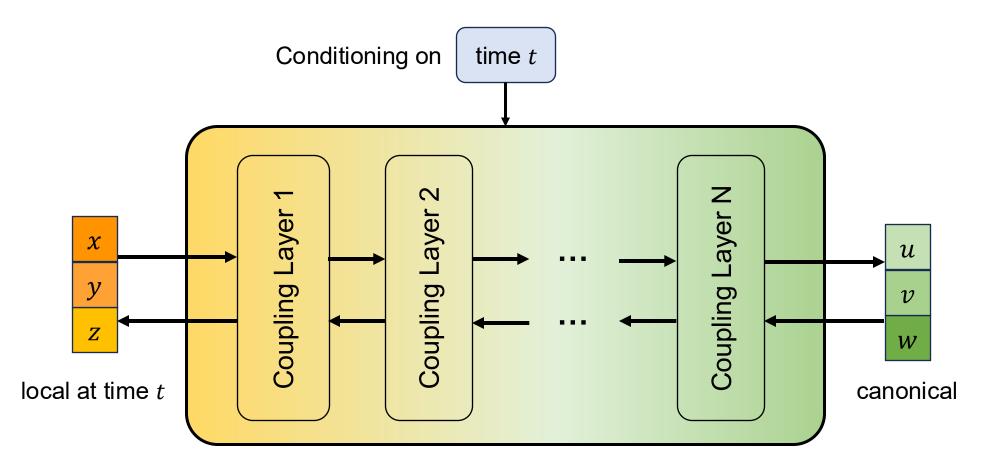
OmniMotion: The Motion Representation



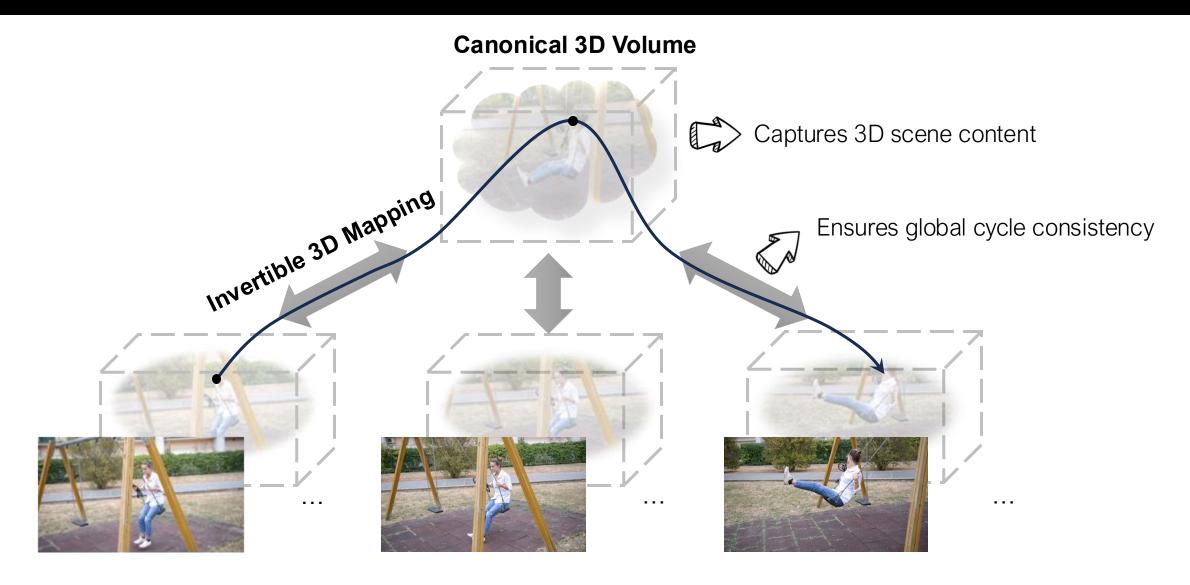
Invertible 3D Mapping

Invertible Neural Networks

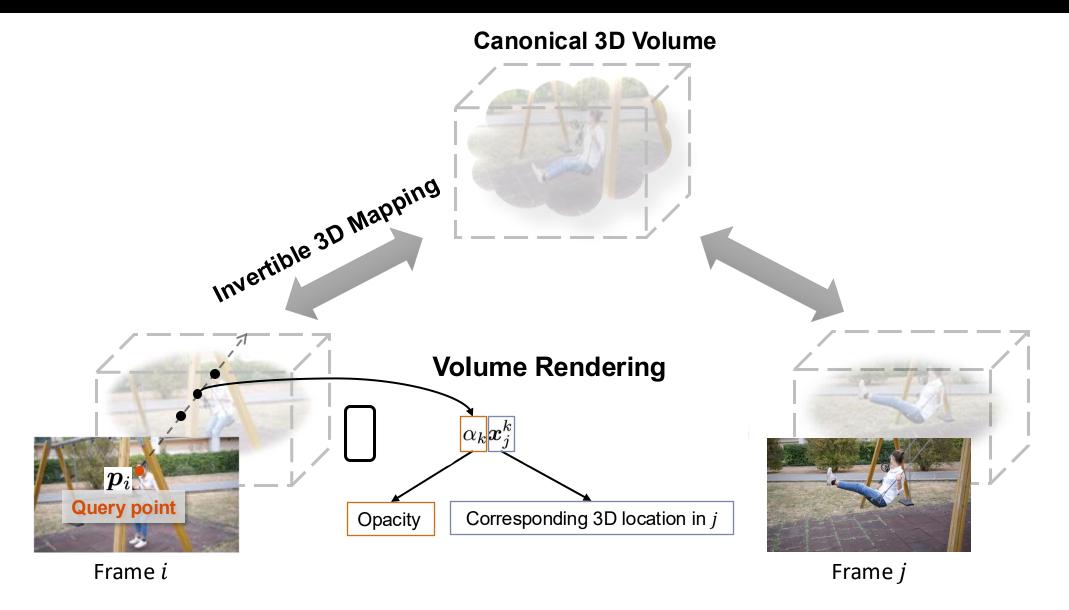
$$y = f(x); x = f^{-1}(y)$$



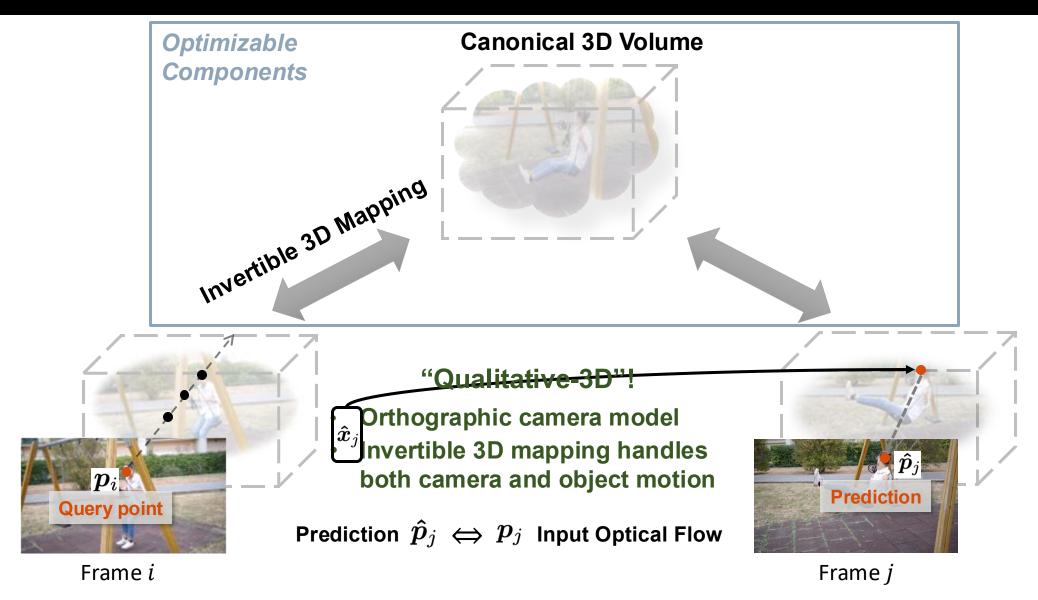
OmniMotion: The Motion Representation



How to Compute 2D Motion?

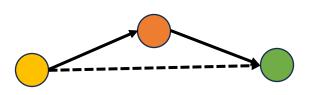


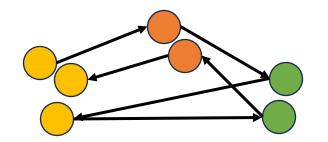
How To Optimize?



How Do We Improve upon Input Optical Flow?

Built-In cycle consistency guarantee!

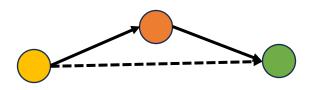


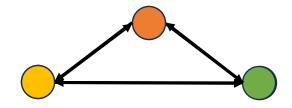


Connect short-ranged motion

How Do We Improve upon Input Optical Flow?

Built-In cycle consistency guarantee!





Connect short-ranged motion

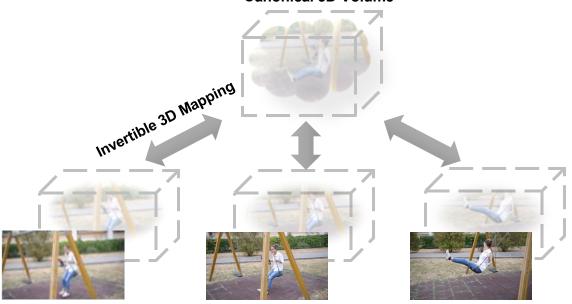
Consolidate inconsistent motion

Connection to Classical 3D Reconstruction

OmniMotion

(For 2D Tracking)

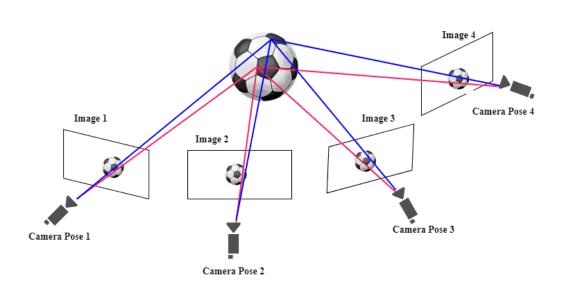
Canonical 3D Volume



Invertible 3D Mapping = A neural network that subsumes both camera and object motion

Bundle Adjustment

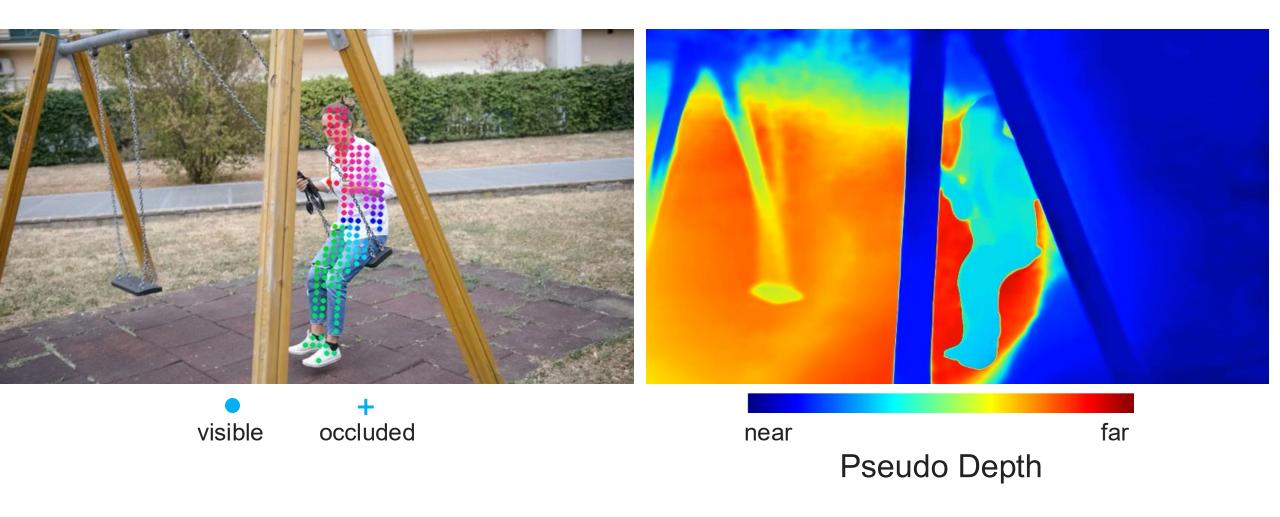
[Triggs et al. ICCV'99] (For Static 3D Reconstruction)



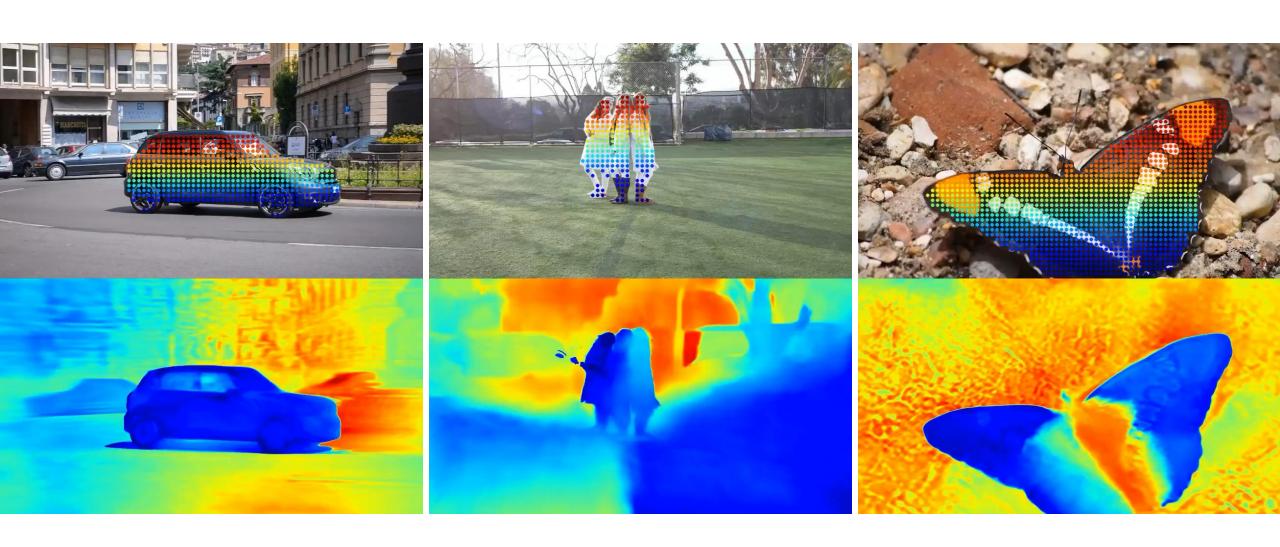
Invertible 3D Mapping = SE(3) Camera motion

Both leverage the underlying structure of the world — consistency and persistence

Structure Emerges from Tracking



Structure Emerges from Tracking



No explicit 3D supervision or input!

A Visualization of Canonical 3D Volume

Summary

- Consistency and persistence can give rise to motion and even pseudo geometry understanding
- However, limitations exist:
 - Per-Video optimization is slow, offline and not scalable
 - Bijection can be overly restrictive
 - The optimization is highly non-convex and ill-conditioned

Open Question: How to learn an online, feed-forward system that preserves consistency, without being overly restrictive?

Today's Talk

Persistence and Consistency → **Motion and Structure**

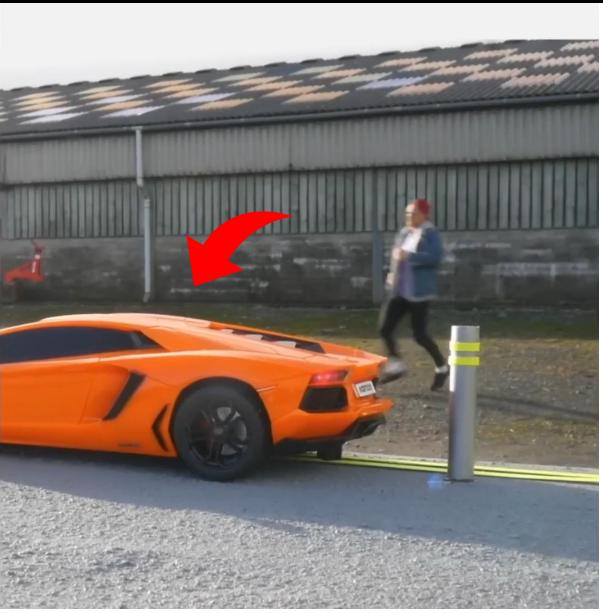
Wang et al. Tracking Everything Everywhere All at Once. *ICCV 2023* (**Best Student Paper**)

A Continuously-Updating 3D Perception Framework

Wang et al. Continuous 3D Perception with Persistent State.

CVPR 2025 (Oral)

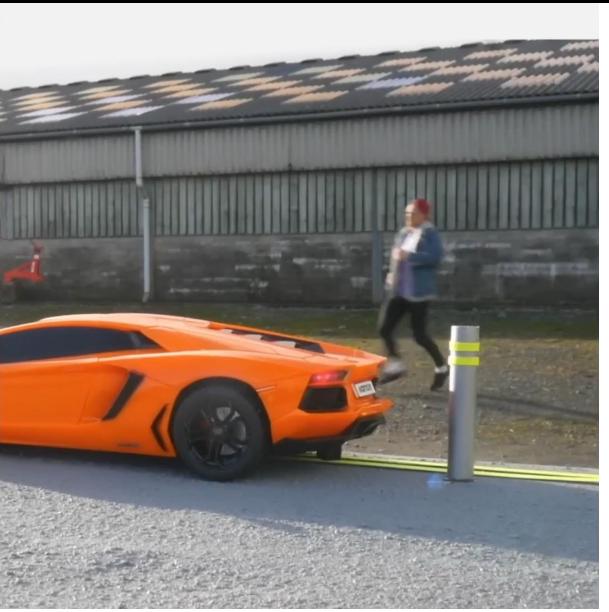
How Do We Perceive the Visual World?



We see the world through our past experience

Data-Driven Priors

How Do We Perceive the Visual World?

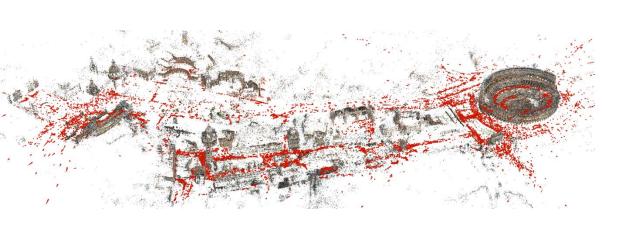


Data-Driven Priors

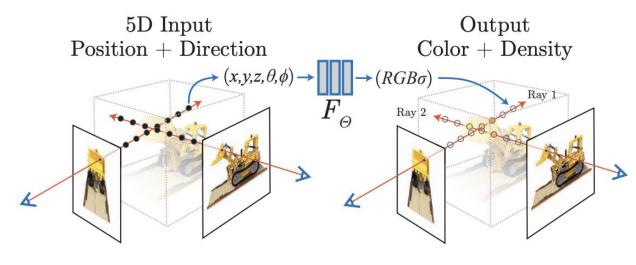
Online, Continuous Update

Efficient Accurate

Prior Art: Tabula Rasa Reconstruction



SfM / SLAM



NeRF [Mildenhall et al. ECCV'20]

Not learning from past experience

Prior Art: Tabula Rasa Reconstruction

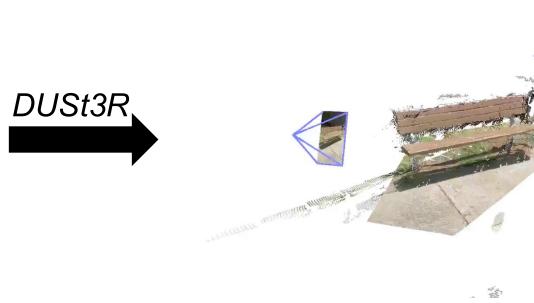
Do not work in under-constrained settings

Single Image

Moving Objects

Prior Art: Learning-Based 3D Methods

Learning rich data-driven priors about the 3D world



Online, Continuous Update

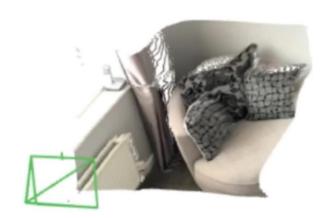
Only works for a pair of images

Online Framework for 3D Perception

Reconstructing 3D scenes from few observations

Online Framework for 3D Perception

- Reconstructing 3D scenes from few observations
- Inferring unseen regions beyond observations



Input View

Online Framework for 3D Perception

- Reconstructing 3D scenes from few observations
- Inferring unseen regions beyond observations
- Continuously updating the reconstruction with more observations

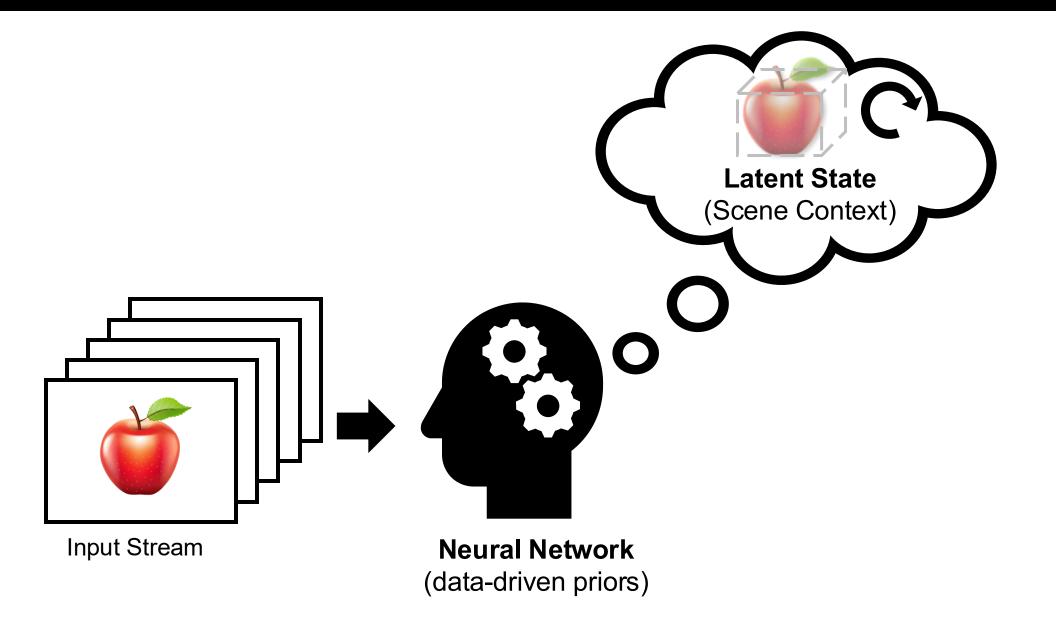
 Static Scenes

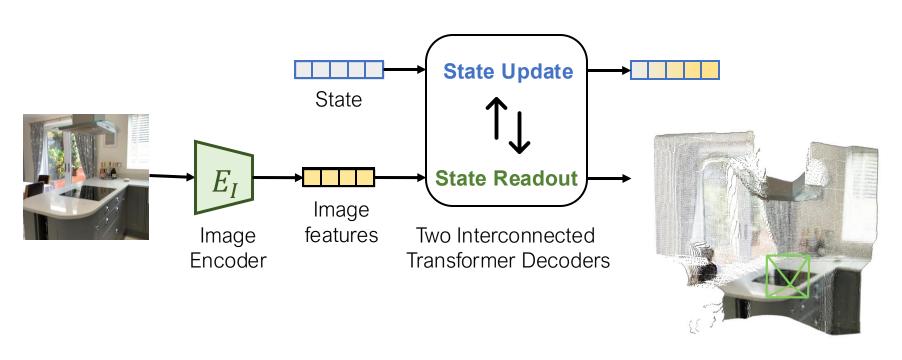
 Dynamic Scenes



Input stream

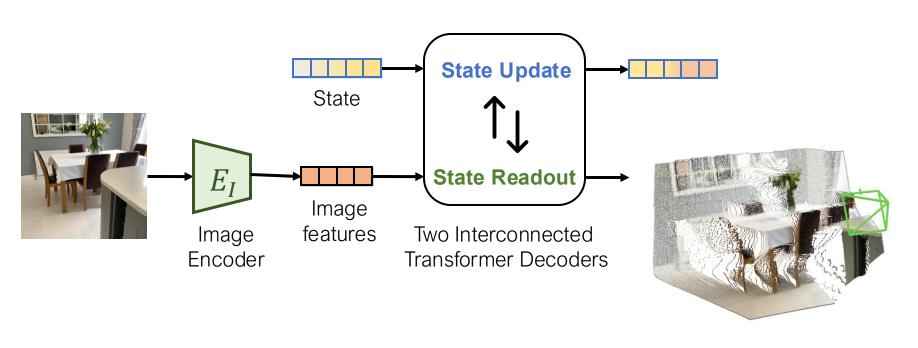
Key Idea

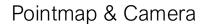




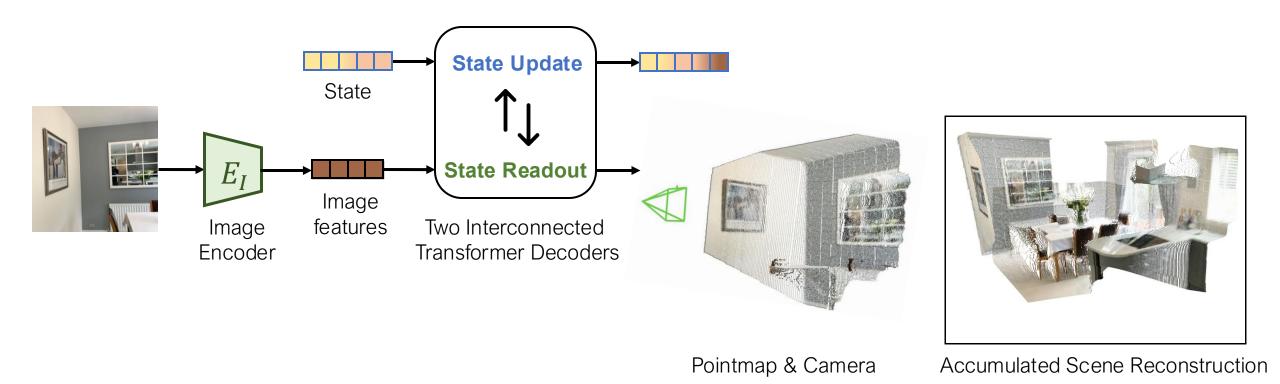
Pointmap & Camera

Accumulated Scene Reconstruction





Accumulated Scene Reconstruction



Flexible: Static & Dynamic Scenes; Videos & Unstructured Photo Collections

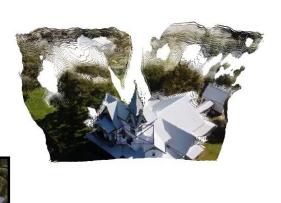
Online Reconstruction for Static Scenes

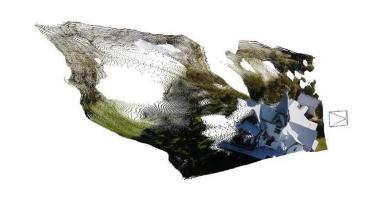
View 1 View 2

Online Reconstruction for Static Scenes

View 1 View 2

Online Reconstruction for Static Scenes

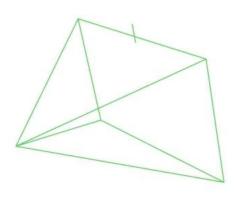




View 1 View 2

Online Reconstruction for Dynamic Scenes

Input video

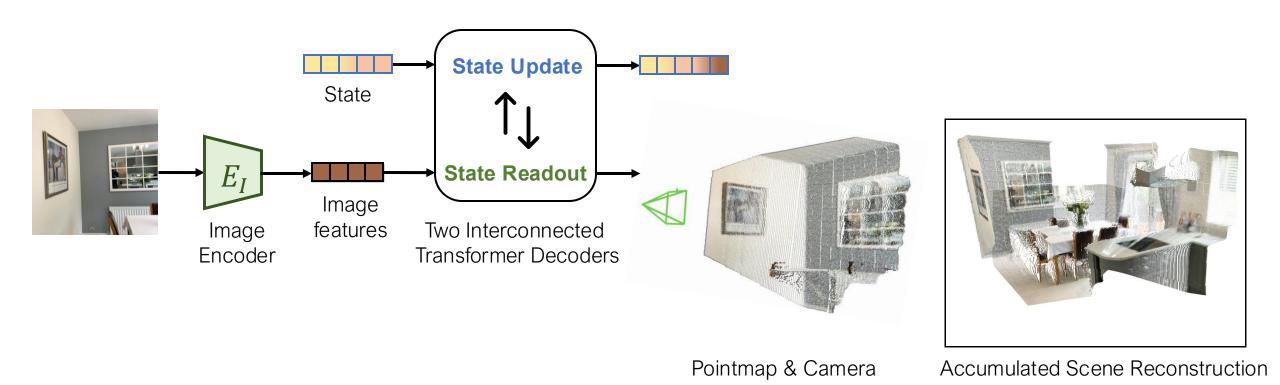


Online Reconstruction for Dynamic Scenes

Input video

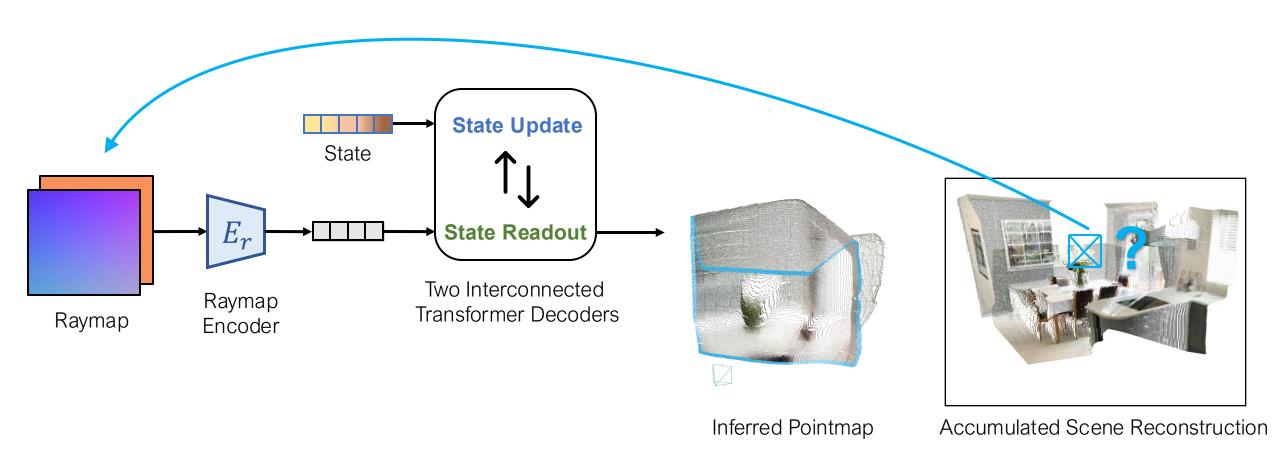
Online Reconstruction for Dynamic Scenes

Online Reconstruction for Photo Collections

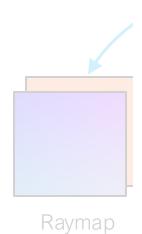


Flexible: Static & Dynamic Scenes; Videos & Unstructured Photo Collections

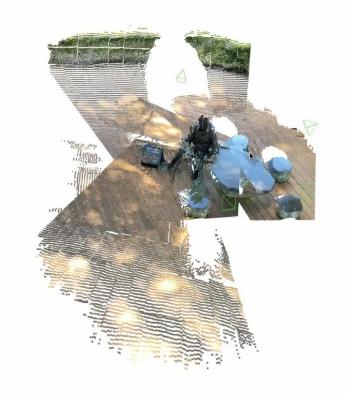
What's Inside the State?

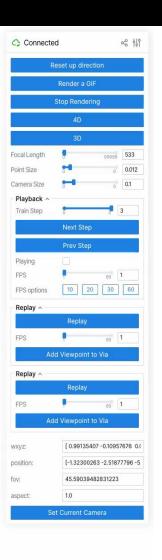


Inferring New Structures



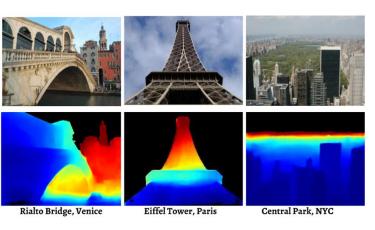
Inferring New Structures





Large-Scale Training on Diverse Datasets

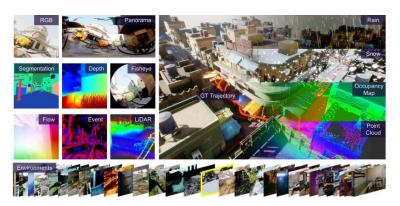
ARKitScenes



MegaDepth

ScanNet++

Waymo Dataset



TartanAir

CO3D v2

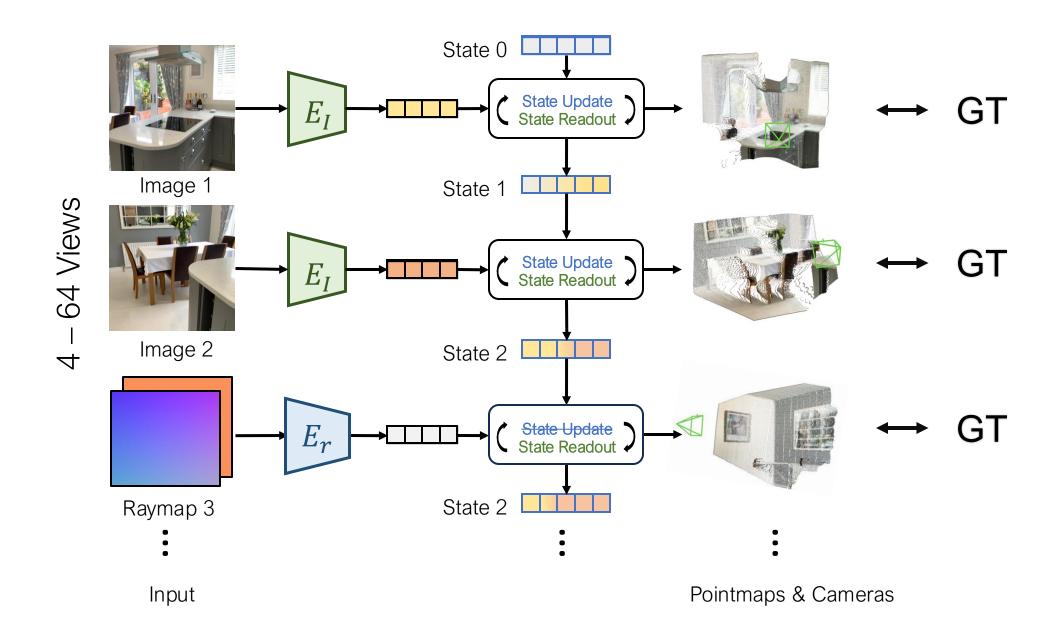
DSLR Image

iPhone RGB

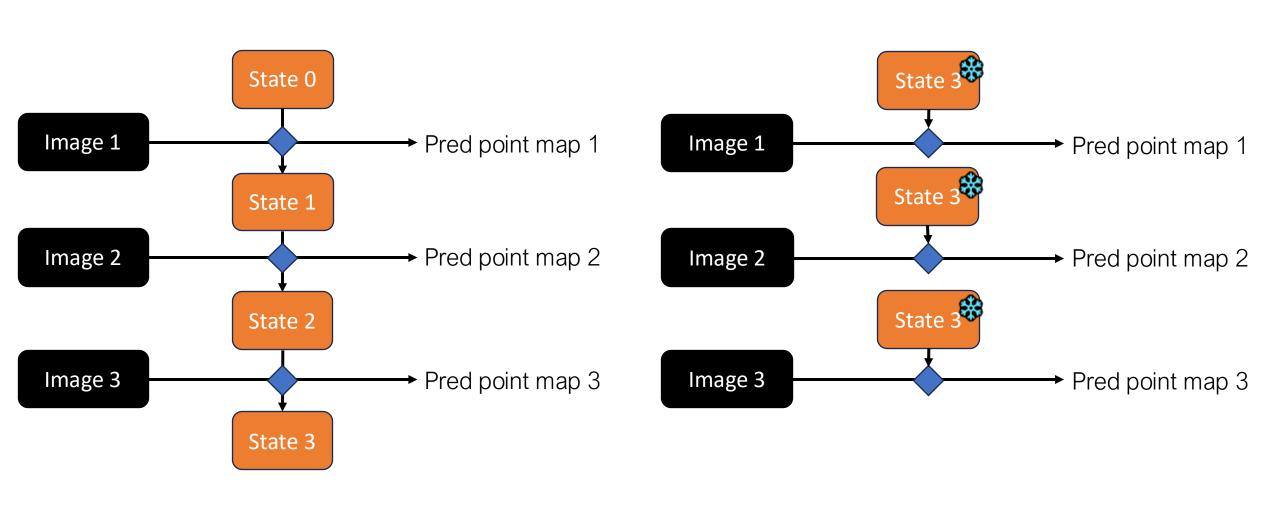
BEDLAM

32 Datasets, ~12M images, ∞ sequences

Training



State Update Analysis



Streaming

Revisiting

Streaming vs. Revisiting

Streaming vs. Revisiting

revisiting 68

A Visual Illusion Example

Start – 3D chair?

2D painting

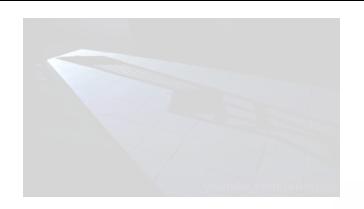
A Visual Illusion Example

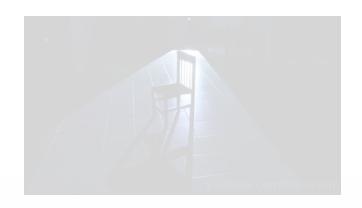
Start – 3D chair?

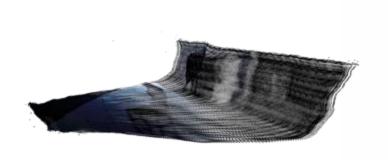
2D painting

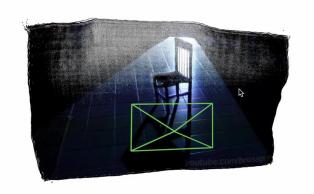
End – 2D painting!

A Visual Illusion Example









Start – 3D chair

2D painting

End – 2D painting

Summary

- From the belief that the world persists emerges the understanding of motion and structure
- Spatial intelligence requires both data-driven priors and the ability to update continuously online

On Multi-Modal Spatial Intelligence

Spatial intelligence doesn't need MLLMs

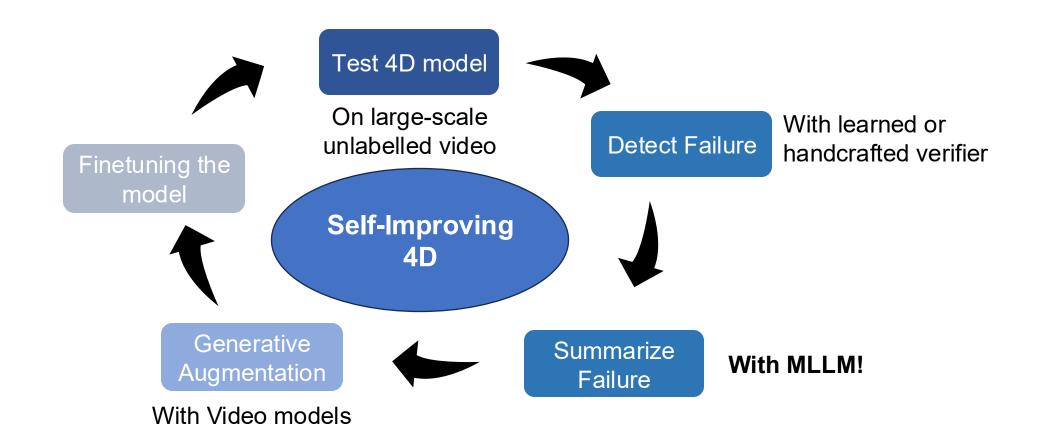
Squirrel scatter hoarding

Still "multi-modal":

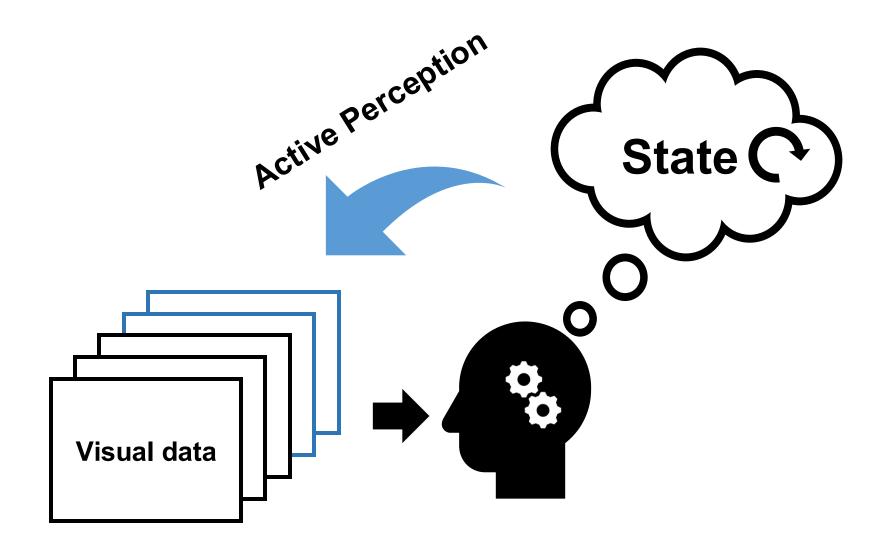
- Vision
- Audition
- Olfaction
- Touch
- . . .

On Multi-Modal Spatial Intelligence

- But MLLMs can help us build spatial intelligence
 - concepts and common-sense knowledge from large-scale multimodal data
 - an interface for communication between humans and machines



Spatial Intelligence in Active Settings



Collaborators

Noah Snavely

Bharath Hariharan

Zhengqi Li

Aleksander Holynski

Yen-Yu Chang

Ruojin Cai

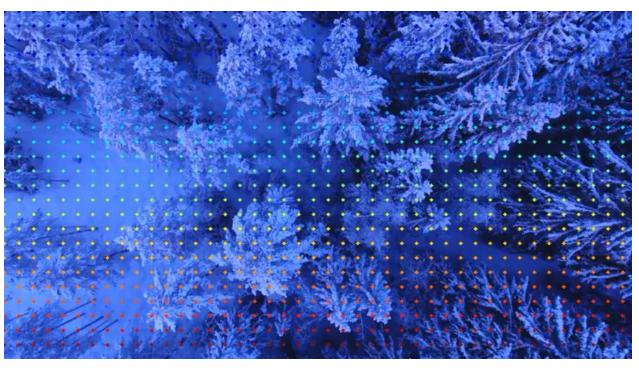
Angjoo Kanazawa

Alexei A. Efros

Yifei Zhang

and many more...)

Thank you!



Input video

