Towards Spatial Supersensing in Video

Saining Xie
Courant Institute, NYU
Oct 2025

Benchmarking visual "sensing"

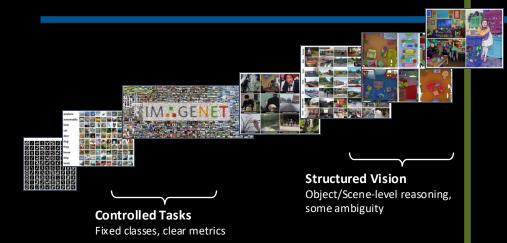
Benchmarking Difficulty & Bias Risk

Higher risk of model biases & indirect evaluation

Visual Question Answering

Language unlock broad querying

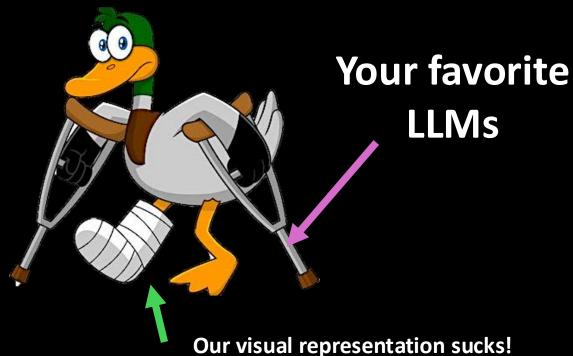
— but introduces bias & shortcut risks



From Controlled to Real-World Settings

Increasing diversity, realism, and task openness

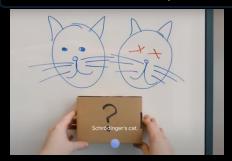
Relying too heavily too early on language can act as a shortcut, compensating for the deficiencies in learning effective visual representations.



"Who won the game?"

[GPT-40, OpenAI]

"what does this remind you of?"



[Project Astra, Google]

Language vs Visual Intelligence

"Where can I buy this mug?"

[V* - CVPR 2024]

"Which direction leads home?"

[V-IRL - ECCV 2024]

"Thinking in Space"

[TiS - CVPR 2025]

Tasks Requiring more Robust Visual-Spatial Intelligence

Tasks Requiring more

Strong Language Capability

Benchmarking visual "sensing"

Benchmarking Difficulty & Bias Risk

Higher risk of model biases & indirect evaluation

Visual Question Answering

Language unlock broad querying

— but introduces bias & shortcut risks

I think we should really work more on From Controlled to Real-

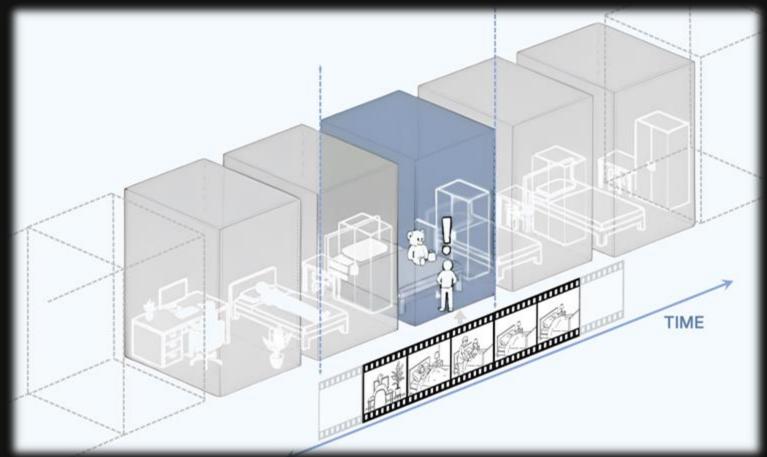
video in the multimodalsera!

Structured Vision

Object/Scene-level reasoning, some ambiguity

Controlled Tasks
Fixed classes, clear metrics

Why is Video Important?



Why is Video Important? We need to work on "supersensing" for superintelligence! TOTAL TOTAL

Linguistic-only understanding: no multimodal intelligence; reasoning is confined to text and symbols without sensory grounding. Current MLLMs have progressed beyond this stage, yet they still retain traces of its bias.

Linguistic-Only Understanding

Knowledge recall; no sensory modeling

Semantic Perception

Naming and describing things for user prompts

Semantic perception: parsing pixels into objects, attributes, and relations. This corresponds to the strong "show and tell" capabilities present in MLLMs.

Linguistic-Only Understanding

Knowledge recall; no sensory modeling

Semantic Perception

Naming and describing things for user prompts

Streaming Event Cognition

Always-on sensing for open-ended streams; memory across time; proactive answering

Streaming event cognition: processing live, unbounded streams while proactively interpreting and responding to ongoing events. This aligns with efforts to make MLLMs real-time assistants.

Linguistic-Only Understanding

Knowledge recall; no sensory modeling

Semantic Perception

Naming and describing things for user prompts

Streaming Event Cognition

Always-on sensing for open-ended streams; memory across time; proactive answering

Spatial Cognition

Seeing the world behind the video; implicit 3D

Implicit 3D spatial cognition: understanding video as projections of a 3D world. Agents must know what is present, where, how things relate, and how configurations change over time. Today's video models remain limited here.

Linguistic-Only Understanding

Knowledge recall; no sensory modeling

Semantic Perception

Naming and describing things for user prompts

Streaming Event Cognition

Always-on sensing for open-ended streams; memory across time; proactive answering

Spatial Cognition

Seeing the world behind the video; implicit 3D

Predictive World Model

Unconscious inference; Predictive, selective, and selfupdating world model

Predictive world modeling: anticipating future states with an internal model that uses expectation and surprise to organize perception for memory and decision making. This process mirrors human "unconscious inference" and is largely absent in current systems.

Linguistic-Only Understanding

Knowledge recall; no sensory modeling

Semantic Perception

Naming and describing things for user prompts

Streaming Event Cognition

Always-on sensing for open-ended streams; memory across time; proactive answering

Spatial Cognition

Seeing the world behind the video; implicit 3D

Predictive World Model

Unconscious inference; Predictive, selective, and selfupdating world model

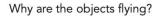
Current Benchmarks are Not Ready

 Video is the ultimate medium. But not all videos are the same. Without the right benchmarks, we risk taking the easy path instead of the right one.

	Previous SoTA	Humans	Gemini 2.5 Flash Preview 04/17*	Gemini 2.5 Pro Preview 05/06*
EVALUATIONS WITH VISUAL INP	UTS			
EgoTempo (test set) 0-shot open-ended VideoQA	40.3 (GPT 4.1*)	63.2	36.5	43.7
LVBench (test set) 0-shot 4-choice VideoQA	60.1 (GPT 4.1*)	94.4	60.9	68.2
Perception Test (test set) 0-shot 5-choice VideoQA	71.4 (Oryx)	91.4	71.2	77.3
QVHighlights (val set) 4-shot Video Moment Retrieval	76.1 (Mr BLIP)		70.2	72.6
VideoMMMU (test set) 0-shot 5-choice VideoQA	76.7 (Kimi-k1.6)	74.4	71.9	81.3
1H-VideoQA (test set) 0-shot 5-choice VideoQA	72.2 (Gemini 1.5 Pro)		64.3	76.2
EVALUATIONS WITH AUDIO-VISU	JAL INPUTS			
VideoMME (test set, long subset) 0-shot 4-choice VideoQA	72.0 (GPT 4.1)		77.8	82.0
YouCook2 Cap (val set) 4-shot Video Clip Captioning	198.8 (VAST)		185.3	198.0
YouCook2 DenseCap (val set) 4-shot Dense Video Captioning	67.2 (Vid2Seq)		67.6	69.3
EVALUATIONS WITH VISUAL-SUI	BTITLES INPUTS			
Minerva (test set) 0-shot 5-choice VideoQA	54.0 (GPT 4.1*)	92.5	61.9	63.5
Neptune (test set) 0-shot 5-choice VideoQA	85.1 (GPT 4.1*)		84.5	85.4
EVALUATIONS WITH AUDIO-VISU	JAL-SUBTITLES INPUTS			
VideoMME (test set) 0-shot 4-choice VideoQA	81.3 (Gemini 1.5 Pro)		79.3	85.2

Some "Spatial Reasoning" benchmark examples

VideoMME



Which feature of the astronaut's equipment indicates they can move independently in space?

Moravec's Paradox, for video!

VSI-Bench

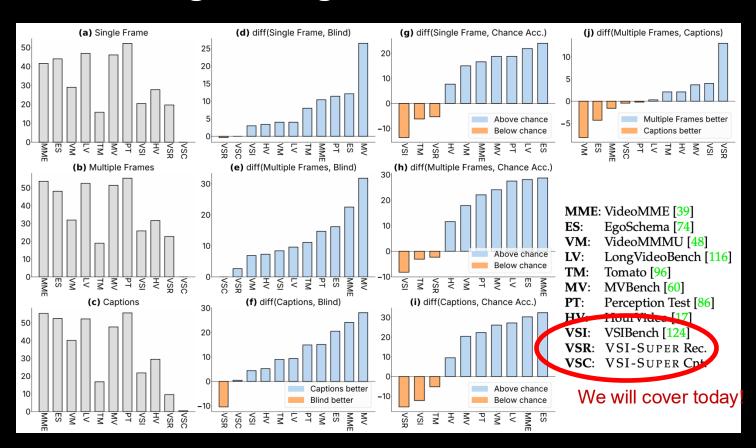
How many chair(s) are in this room?

If I am standing by the refrigerator and facing the washer, is the stove to my left, right, or back?

Deconstructing Existing Video Benchmarks

- Multiple Frames: Model processes 32 uniformly sampled frames from each video clip — standard video representation method.
- Single Frame: Model uses only the middle frame of the clip to test performance with minimal visual context.
- Frame Captions: Model receives captions for the same 32 sampled frames (no visual input) to test task solvability without perceptual grounding.
 Captions generated using the Gemini-2.0-Flash API.

Deconstructing Existing Video Benchmarks



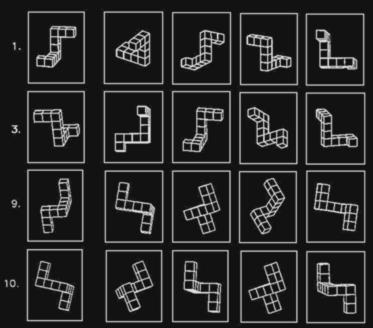
How can we rigorously investigate spatial supersensing in video, through the creation of new spatial video benchmarks?

Thinking in Space: How Multimodal Large Language Models See, Remember, and Recall Spaces

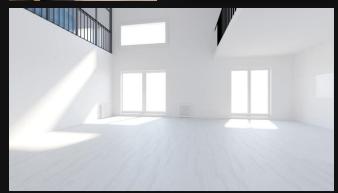
Jihan Yang*, Shusheng Yang*, Anjali W. Gupta*, Rilyn Han*, Li Fei-Fei, Saining Xie

Visual-spatial Intelligence

Mental Rotation Test



Furniture Shopping



- [1] Shutterstock
- [2] Generated with Gemini 2.0 Flash
- [3] Adobe Stock
- [4] Howard Gardner. Frames of Mind: The Theory of Multiple Intelligences, 1983.

In computer vision...

We study *space*, but not *thinking*...

[ScanNet, Dai et al. 2017]

We study *thinking*, but not in *space*...

[Video-MME, Fu et al. 2024]

Watch the video and answer the question

How many chairs are there in this room?

Your Answer: ?

Ground Truth: 9

Gemini-1.5 Pro Answer: 4

Watch the video and answer the question

If I am standing by the <u>nightstand</u> and facing the <u>chair</u>, is the <u>closet</u> to the left or the right of the chair?

A. Left B. Right

Your Answer: ?

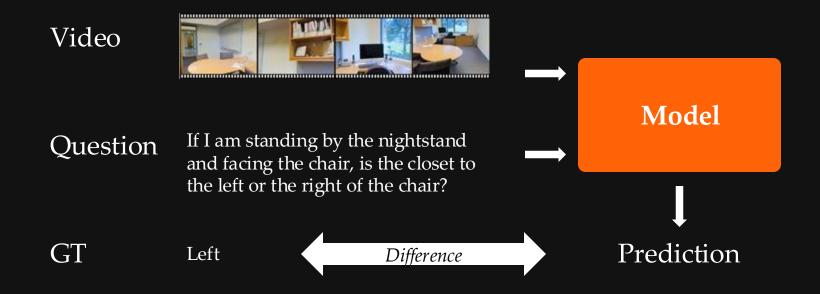
Ground Truth: Left

Gemini-1.5 Pro Answer: Right

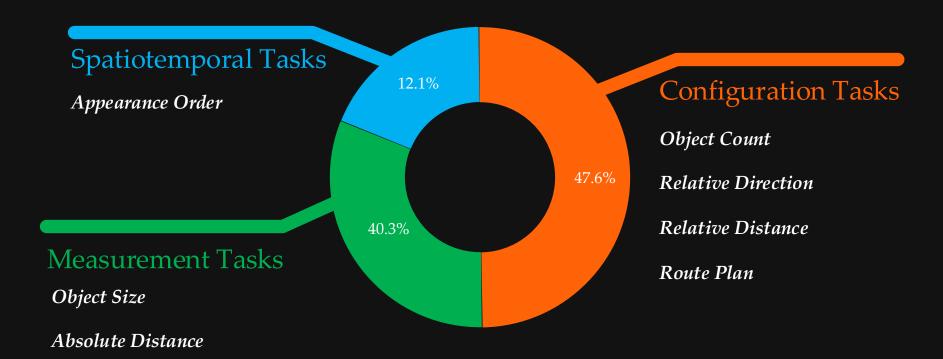
How do humans do this? Can models do this? How?

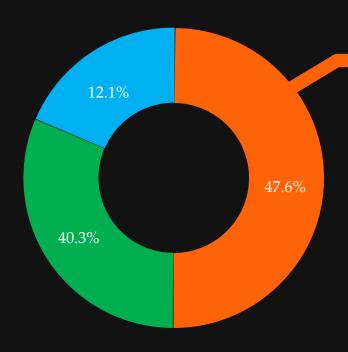
VSI-Bench

Benchmark Formulation



Room Size





Configuration Tasks

Object Count

How many {object} are there in this room?

Relative Direction

If I am standing by {object1} and facing {object2}, is {object3} to my left, right, or back?

Relative Distance

Which of these objects ({list of candidate objects}) is the closest to the {target object}?

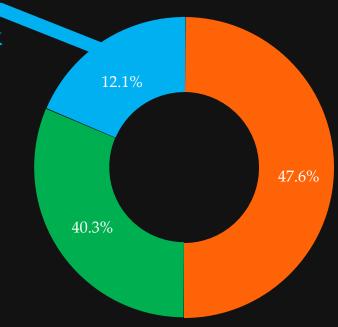
Route Plan

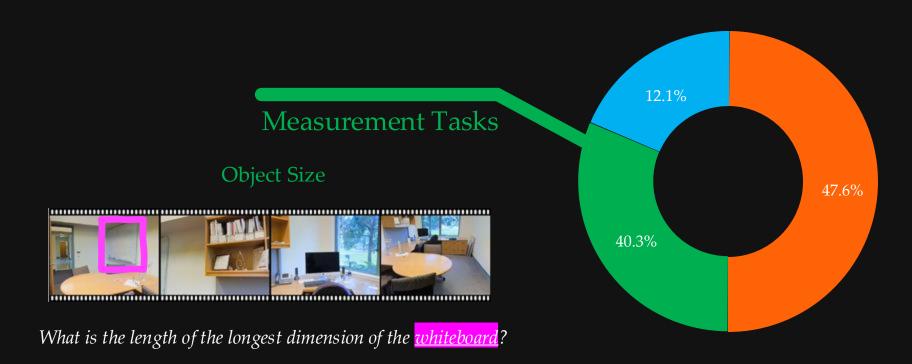
How can I move from {place A} to {place B}? 1. Go forward, 2.____, 3. Go forward, 4. ____.

Spatiotemporal Task

Appearance Order

What is the appearance order of whiteboard, bookshelf, monitor, and cabinet?





How can we construct the benchmark?

Real-world Video

Ground Truth

Object Counts Room Size Direction Distance

...

Repurposing Existing 3D Dataset!

ScanNet ScanNet++ ARKitScenes

Object Category 3D Boxes Segmentation Map

Object Counts
Object Size
Room Size
Distance
Direction
Appearance

Meta Information

Automatic QA Generation

Human In the Loop Verifying and Filtering

5K+ High Quality QA Pairs Affordable Human Efforts

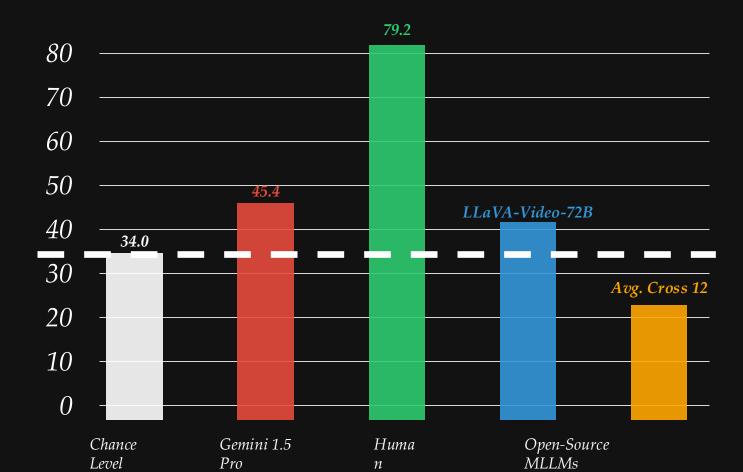
Benchmarking MLLMs on VSI-Bench

Chance Level Gemini 1.5 Pro

Huma

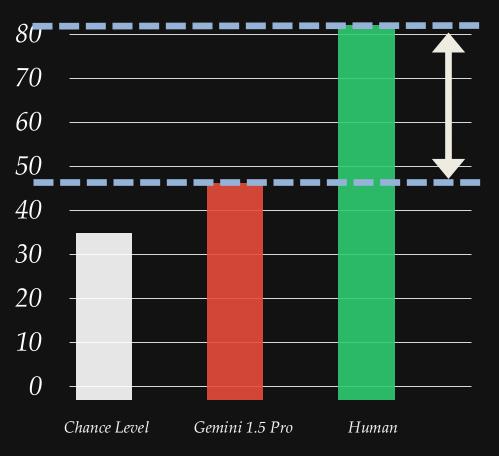
 \int_{0}^{π}

Open-Source MLLMs



How do MLLMs Think in Space?

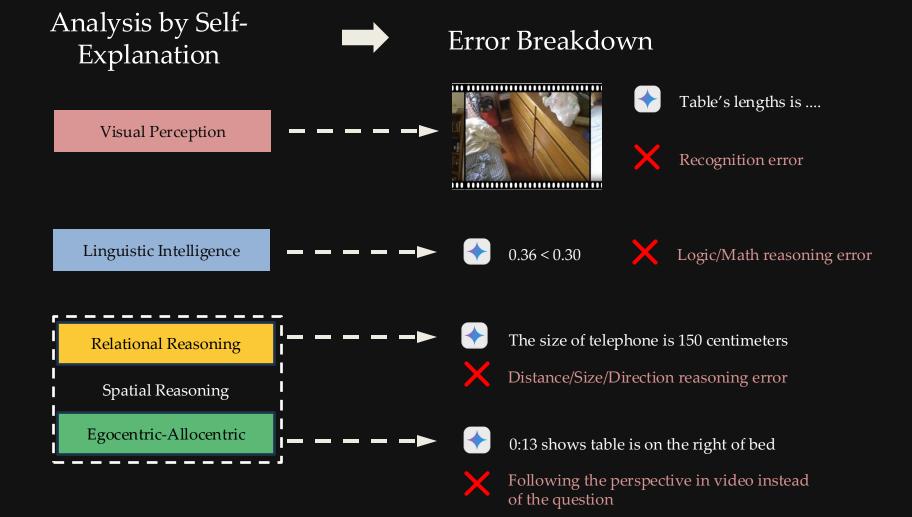
How do MLLMs Think in Space?



Gap between human and model

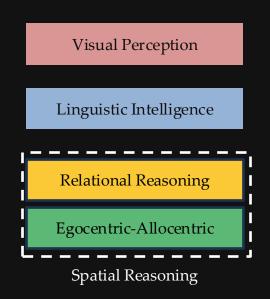
How do MLLMs Think in Space?

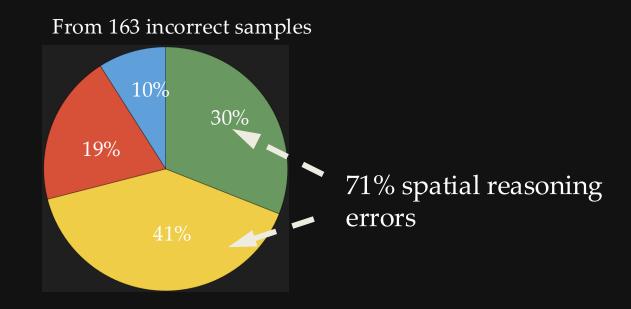
Prompt Model to Explain Itself



Analysis by Self-Explanation

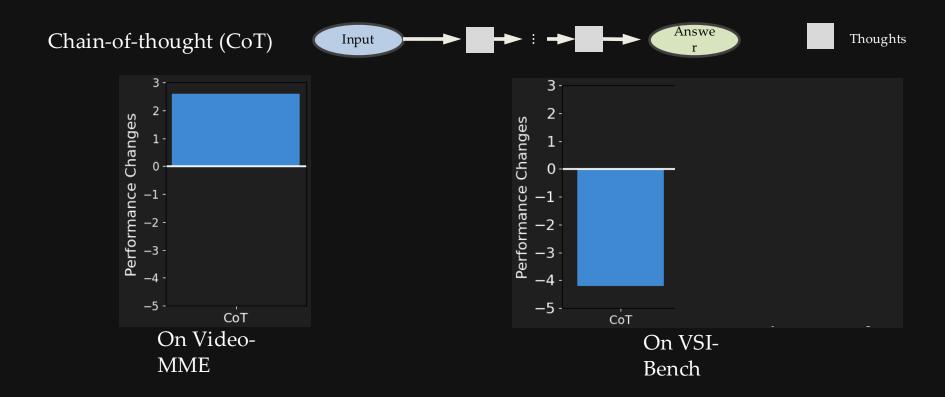
Error Breakdown



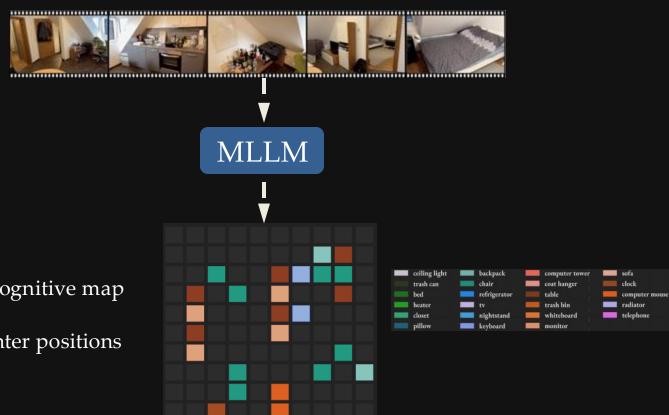


Spatial reasoning is the main bottleneck for MLLMs on VSI-Bench

Scaling Linguistic Reasoning



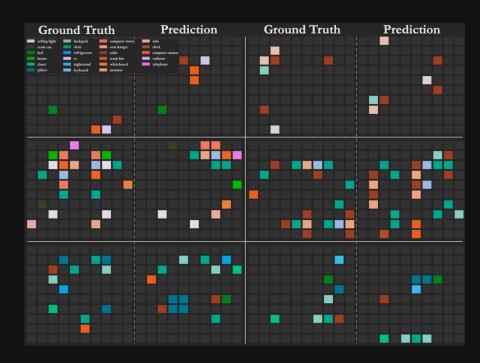
Analysis by Visualizing Cognitive Map

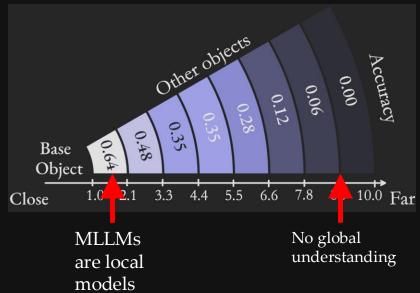


10 by 10 cognitive map

Object center positions

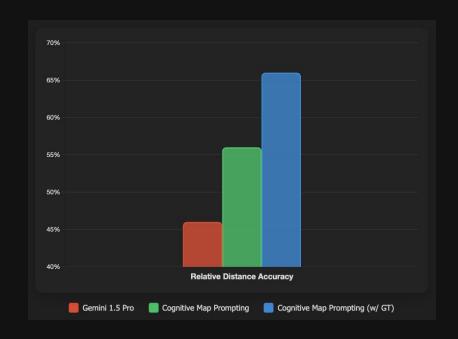
Quantitatively Assess Cognitive Map





Can Cognitive Map Help Distance Reasoning?

Cognitive Map Prompting



Preliminary Step

Cambrian-S:

Towards Spatial Supersensing in Video

Shusheng Yang^{1*} Jihan Yang^{1*} Pinzhi Huang^{1†} Ellis Brown^{1†} Zihao Yang¹ Yue Yu¹ Shengbang Tong¹ Zihan Zheng¹ Yifan Xu¹ Muhan Wang¹ Danhao Lu¹ Rob Fergus¹ Yann LeCun¹ Li Fei-Fei² Saining Xie¹

¹ New York University ² Stanford University

What's missing from VSI-Bench:

- Limited challenge: videos are typically short in duration.
- Restricted scope: confined to a single space.
- Benchmark-only focus: lacks exploration of training!

VSI-SUPER: a two-part, long-horizon evaluation towards evaluating "supersensing"

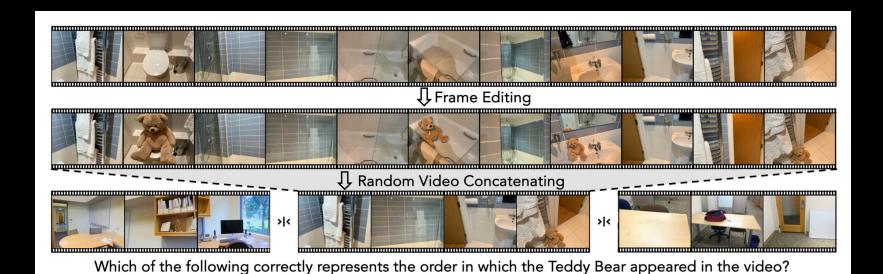
- Combines concatenated video sequences with online Q&A.
- Like *Needle-in-a-Haystack* tasks but **more realistic and contextually grounded**.
- Designed to be **resistant to brute-force context expansion**, emphasizing true spatial sensing.

VSI-SUPER Recall:

A. Toilet, Bathtub, Sink, Floor

C. Toilet, Sink, Floor, Bathtub

Long-horizon spatial observation and recall



B. Bathtub, Toilet, Sink, Floor

D. Floor, Toilet, Bathtub, Sink

Which of the following correctly represents the order in which the Stitch appeared in the video?

A. Stove, Trash bin, Refrigerator, Counter

B. Trash bin, Refrigerator, Counter, Stove

C. Stove, Counter, Refrigerator, Trash bin

D. Trash bin, Stove, Counter, Refrigerator

Which of the following correctly represents the order in which the Hello Kitty appeared in the video?

A. Nightstand, Bed, Crib, Blue bench C. Bed, Nightstand, Blue bench, Crib

bench B. Blue bench, Crib, Nightstand, Bed D. Blue bench, Bed, Crib, Nightstand

Which of the following correctly represents the order in which the Golden Retriever appeared in the video?

A. Bed, Table, Chest of drawers, Floor C. Chest of drawers, Floor, Table, Bed B. Table, Chest of drawers, Bed, Floor D. Floor, Bed, Chest of drawers, Table

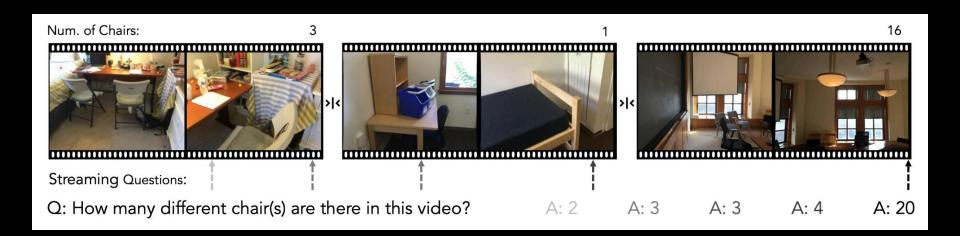
Which of the following correctly represents the order in which the white Ragdoll cat appeared in the video?

A. Ground, Trash bin, Bench, Table C. Ground, Trash bin, Table, Bench

B. Table, Bench, Ground, Trash bin D. Trash bin, Bench, Table, Ground

VSI-SUPER Count:

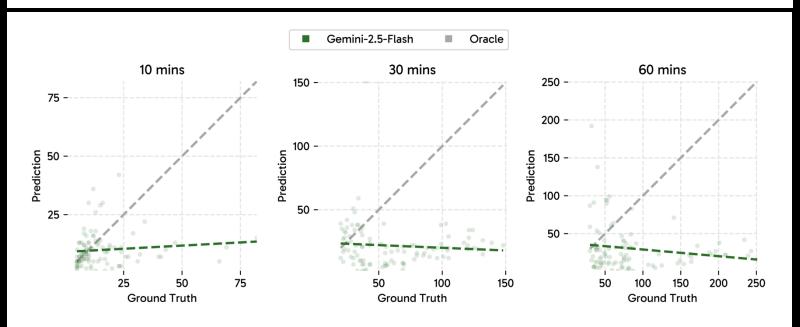
Continual counting under changing viewpoints and scenes.



Easy for humans, yet extremely difficult for current models!

Gemini-2.5 on VSI-SUPER

Model	VideoMME[20]	VidooMMMIII401	VCI Donah [104]		VSR	VSC		
Model	videolviiviE[39]	VideoMMMU[48]	v Si-bench[124]	60 mins	120 mins	60 mins	120 mins	
Gemini-2.5-Flash	81.5	79.2	45.7	41.5	Out of Ctx.	10.9	Out of Ctx.	



Gemini-2.5 on VSI-SUPER

Ground Truth

Model	VideoMME[39]	VideoMMMU[48]	VSI-Bench[124]		VSR	VSC		
Model	VIGEOWINIE[59]	VideolviiviiviO[40]	V 51-Defici[124]	60 mins	120 mins	60 mins	120 mins	
Gemini-2.5-Flash	81.5	79.2	45.7	41.5	Out of Ctx.	10.9	Out of Ctx.	

Gamini-2 5-Flach

Video LLMs struggle with counting; scaling data and context length alone fails to improve generalization.

Current Data are Not Ready

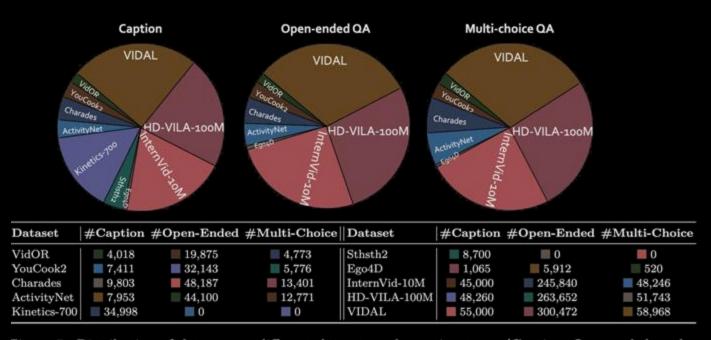
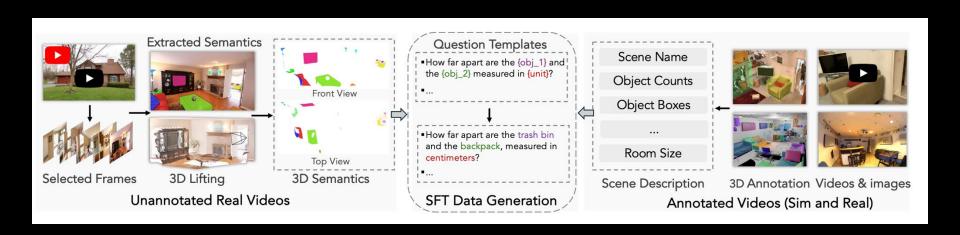


Figure 5: Distribution of data across different datasets and question types (Caption, Open-ended, and Multi-Choice).

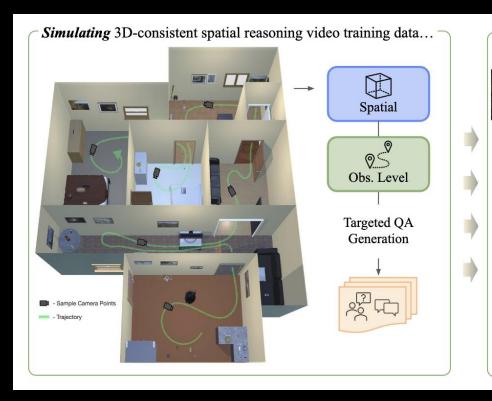
Current Data are Not Ready

VSI-590K: Is Spatial Sensing Simply a Data Problem?



Data Composition and Sources

# Videos	# Images	# QA Pairs
199	-	5,187
183	-	60,207
1,201	-	92,145
856	-	138,701
2,899	-	57,816
625	-	20,092
-	5,113	176,774
-	20,100	20,100
-	14,801	14,801
-	4,844	4,844
5,963	44,858	590,667
	199 183 1,201 856 2,899 625 -	199 - 183 - 1,201 - 856 - 2,899 - 625 - 5,113 - 20,100 - 14,801 - 4,844



... improves real video spatial performance

VSI-Bench

+8.4% +5.4%

LLaVA-Vid LLaVA-OV

Q: What is the distance between the keyboard and the TV, in meters?

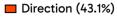
and on out-of-domain benchmarks as well

OpenEQA

Q: Can another cookie jar fit on the cookie jar shelf?

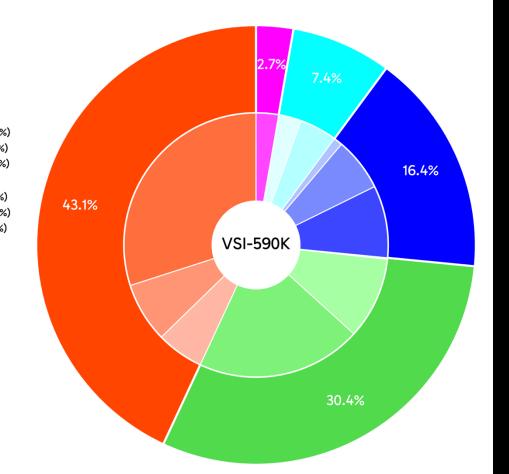
MME-RealWorld

Q: What is the future state of the white suv in the middle?



- Relative Direction Object (30.0%)
- Absolute Direction Object (7.3%)
- Relative Direction Camera (5.8%)

 Distance (30.4%)
- Relative Distance Object (20.2%)
- Absolute Distance Object (10.0%)
 - Relative Distance Camera (0.2%)
- Size (16.4%)
 Relative Size Object (8.8%)
- Absolute Size Object (6.5%)
- Absolute Size Room (1.1%)
- ☐ Count (7.4%)
- Absolute Count (4.6%)
- Relative Count (2.8%)
- Appearance Order (2.7%)
- Appearance Order (2.7%)

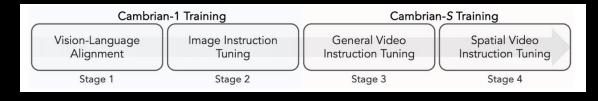


Data Contributions

			Image					VSI-B	ench (Video))		
	VSI Data Mixture	RWQA ¹	3DSR	CV-B	Avg	Obj Ct	Abs Dst	Obj Sz	Rm Sz	Rel Dst	Rel Dir	Rte Pln	Ap Ord
	Baseline	64.2	54.5	73.5	28.5	18.1	20.0	36.0	22.2	42.9	31.3	24.6	33.0
Daal	Real Videos + S3DIS + ADT	65.4 65.9	54.9 56.5	75.3 77.5	41.6 41.0	63.8 51.0	21.0 29.8	44.9 52.5	37.0 40.2	43.8 42.3	47.4 38.8	34.0 34.0	41.1 39.8
	endkisynthet + ScanNet + V2 esuthaits boo												76.1 76.2
Sourc	+ ProcThor + HyperSim Pseudo-Annotated Images	62.2 67.2	55.7 56.0	74.9 79.7	36.4 45.6	21.0 67.8	29.7 32.0	49.3 59.3	3.8 36.4	52.3 53.2	45.7 47.0	30.4 32.5	58.7 36.6
	+ YTB RoomTour + OXE & AGIBot All-in-One	62.2 64.4 60.8	52.6 54.4 54.0	75.0 72.5 77.9	32.5 30.6 63.2	43.4 40.3 73.5	25.8 23.1 49.4	24.2 27.9 71.4	27.3 26.6 70.1	38.7 38.0 66.9	31.4 22.8 61.5	28.4 32.0 36.6	40.9 33.8 76.6

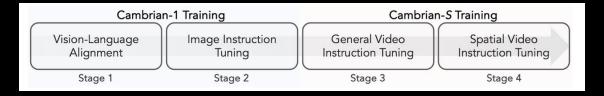
Pre-Training is Important

Model	VSI-Bench	VideoMME	EgoSchema	Perception Test
Different Base Models				
A1 (w/o. I-IT, i.e. QwenLM)	21.4	44.2	42.9	44.5
A2 (A1 + I-IT, <i>i.e.</i> Cambrian-1)	25.8	53.7	48.1	55.4
A3 (A2 + V-IT, 429K data)	28.9	61.2	50.3	66.3
A4 (A2 + V-IT, 3M data)	35.7	62.6	77.0	70.9
SFT w/. VSI-590K				
from A1	57.2	40.3	38.7	52.3
from A2	66.8	46.7	47.2	52.3
from A3	68.8	52.3	48.4	55.8
from A4	69.2	54.1	55.2	59.2
SFT w/. VSI-590K & gen	eral V-IT data	mixture		
from A1	61.3	60.5	52.8	65.0
from A2	63.2	62.6	52.9	65.6
from A3	64.0	61.0	54.9	66.8
from A4	65.1	61.9	77.3	71.2



Pre-Training is Important

200000000000000000000000000000000000000		200000 000 000 00000	Production and the second	
Model	VSI-Bench	VideoMME	EgoSchema	Perception Test
Different Base Models				
A1 (w/o. I-IT, i.e. QwenLM)	21.4	44.2	42.9	44.5
A2 (A1 + I-IT, <i>i.e.</i> Cambrian-1)	25.8	53.7	48.1	55.4
A3 (A2 + V-IT, 429K data)	28.9	61.2	50.3	66.3
A4 (A2 + V-IT.3M data)	35.7	62.6	77.0	70.9
SFT w/. VSI-590K				
from A1	57.2	40.3	38.7	52.3
from A2	66.8	46.7	47.2	52.3
from 63 *	58.8	523	4 8.4	<u>55.8</u>
e duality (O.T.4" M	nuktim	100131	" ore-	-tra₃⊾nın
e quality for f ³ * m	neral V-IT data	mixture		
from A1	61.3	60.5	52.8_ C _0	65.0
influences	00SI-1	rainii	12 52 9 TT	ectaver
from A3	64.0	61.0	54.9	66.8
from A4	65.1	61.9	77.3	71.2



Current architectures are not ready

What makes spatial sensing unique?

- Infinite tokens in, infinite tokens out

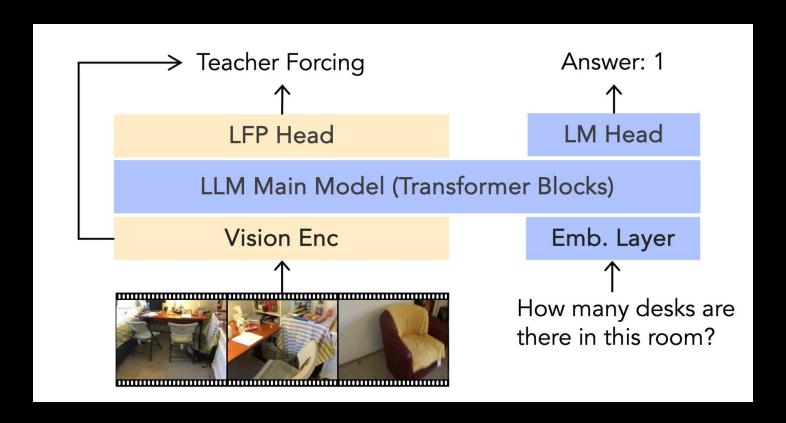
- Our real-world experience isn't meant to be processed token by token.

Current architectures are not ready

- Human Visual Stream = Extremely High Bandwidth
- Retina → Brain: ~10 million bits/sec
- ## All sensory input (mostly vision): up to 1 billion bits/sec
- **Conscious awareness:** only ~10 bits/sec

Most visual data is filtered and compressed before reaching perception. How?

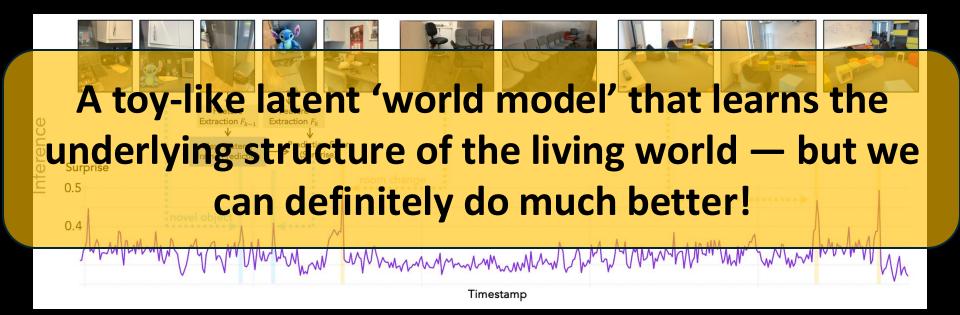
Prototype: Predictive Sensing



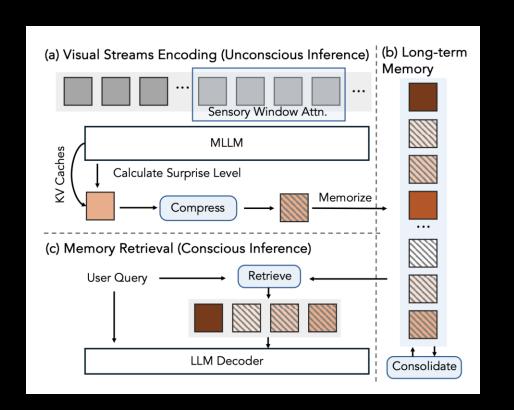
Violation-of-Expectation (or simply, surprises!): how humans regulate what information they take in.



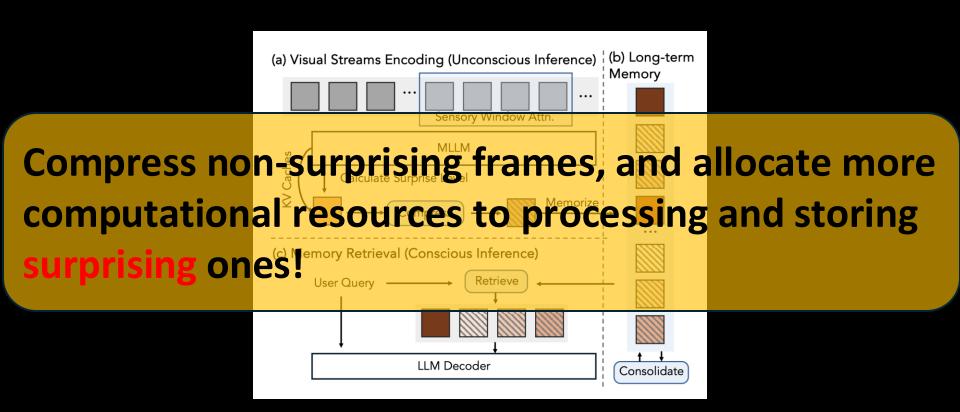
Violation-of-Expectation (or simply, surprises!): how humans regulate what information they take in.



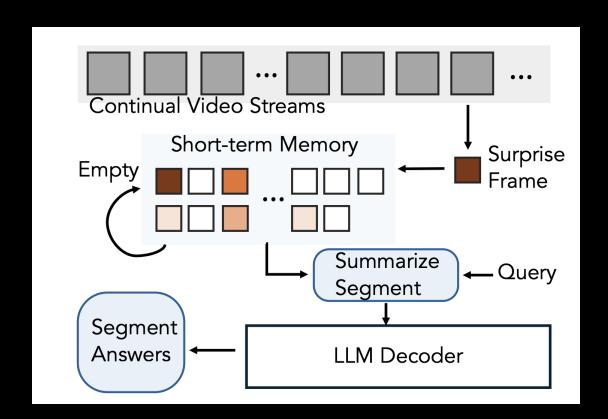
Use Case #1: Memory Management



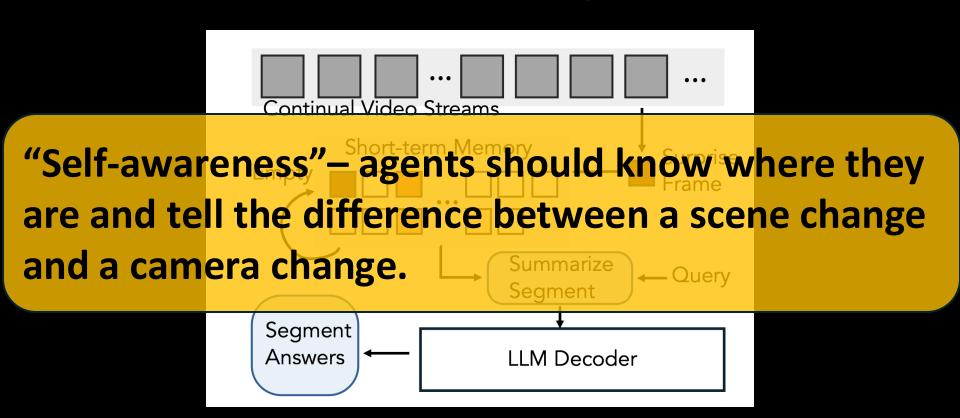
Use Case #1: Memory Management

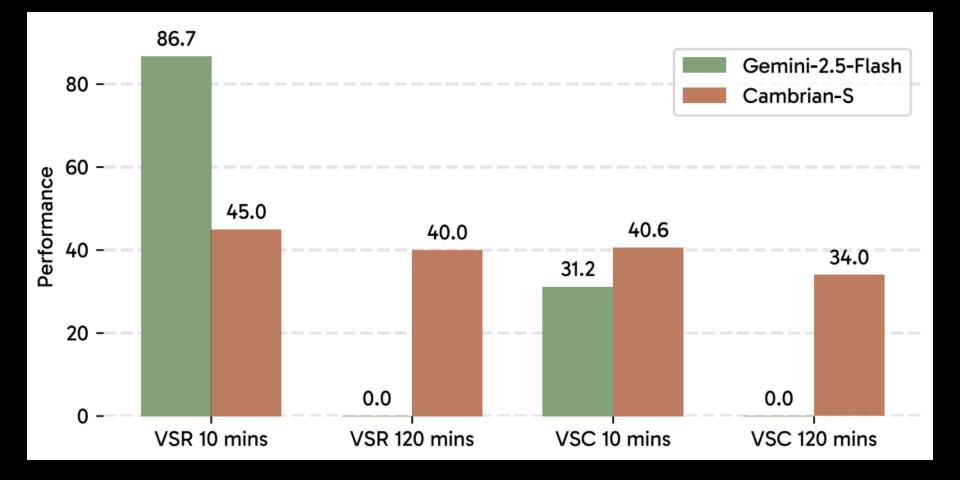


Use Case #2: Scene/Event Segmentation



Use Case #2: Scene/Event Segmentation





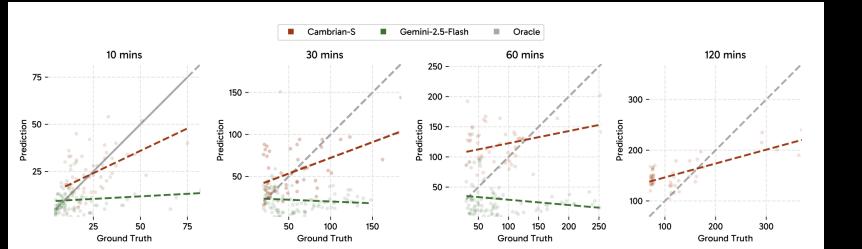


Figure 18 | **Ground truth** *vs.***prediction distribution.** Compared to Gemini-2.5-Flash, Cambrian-*S* with predictive error as surprise exhibits better generalizability as the ground truth number of objects increases.

The gray dashed line represents perfect prediction (y = x).

To summarize:

We must build artificial supersensing before artificial superintelligence.
We are sitting on a big opportunity here, literally.

Thank You!